Add Activepieces integration for workflow automation

- Add Activepieces fork with SmoothSchedule custom piece
- Create integrations app with Activepieces service layer
- Add embed token endpoint for iframe integration
- Create Automations page with embedded workflow builder
- Add sidebar visibility fix for embed mode
- Add list inactive customers endpoint to Public API
- Include SmoothSchedule triggers: event created/updated/cancelled
- Include SmoothSchedule actions: create/update/cancel events, list resources/services/customers

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
poduck
2025-12-18 22:59:37 -05:00
parent 9848268d34
commit 3aa7199503
16292 changed files with 1284892 additions and 4708 deletions

View File

@@ -0,0 +1,33 @@
{
"extends": [
"../../../../.eslintrc.base.json"
],
"ignorePatterns": [
"!**/*"
],
"overrides": [
{
"files": [
"*.ts",
"*.tsx",
"*.js",
"*.jsx"
],
"rules": {}
},
{
"files": [
"*.ts",
"*.tsx"
],
"rules": {}
},
{
"files": [
"*.js",
"*.jsx"
],
"rules": {}
}
]
}

View File

@@ -0,0 +1,7 @@
# pieces-straico
This library was generated with [Nx](https://nx.dev).
## Building
Run `nx build pieces-straico` to build the library.

View File

@@ -0,0 +1,4 @@
{
"name": "@activepieces/piece-straico",
"version": "0.1.10"
}

View File

@@ -0,0 +1,57 @@
{
"name": "pieces-straico",
"$schema": "../../../../node_modules/nx/schemas/project-schema.json",
"sourceRoot": "packages/pieces/community/straico/src",
"projectType": "library",
"targets": {
"build": {
"executor": "@nx/js:tsc",
"outputs": [
"{options.outputPath}"
],
"options": {
"outputPath": "dist/packages/pieces/community/straico",
"tsConfig": "packages/pieces/community/straico/tsconfig.lib.json",
"packageJson": "packages/pieces/community/straico/package.json",
"main": "packages/pieces/community/straico/src/index.ts",
"assets": [
"packages/pieces/community/straico/*.md",
{
"input": "packages/pieces/community/straico/src/i18n",
"output": "./src/i18n",
"glob": "**/!(i18n.json)"
}
],
"buildableProjectDepsInPackageJsonType": "dependencies",
"updateBuildableProjectDepsInPackageJson": true
},
"dependsOn": [
"^build",
"prebuild"
]
},
"publish": {
"command": "node tools/scripts/publish.mjs pieces-straico {args.ver} {args.tag}",
"dependsOn": [
"build"
]
},
"lint": {
"executor": "@nx/eslint:lint",
"outputs": [
"{options.outputFile}"
]
},
"prebuild": {
"executor": "nx:run-commands",
"options": {
"cwd": "packages/pieces/community/straico",
"command": "bun install --no-save --silent"
},
"dependsOn": [
"^build"
]
}
},
"tags": []
}

View File

@@ -0,0 +1,165 @@
{
"1": "1",
"2": "2",
"3": "3",
"4": "4",
"Straico": "Straico",
"All-in-one generative AI platform": "All-in-one generative AI platform",
"\nFollow these instructions to get your Straico API Key:\n\n1. Visit the following website: https://platform.straico.com/user-settings.\n2. Once on the website, locate \"Connect with Straico API\" and click on the copy API Key.\n": "\nFollow these instructions to get your Straico API Key:\n\n1. Visit the following website: https://platform.straico.com/user-settings.\n2. Once on the website, locate \"Connect with Straico API\" and click on the copy API Key.\n",
"Ask AI": "Ask AI",
"Image Generation": "Image Generation",
"Upload File": "Upload File",
"Create RAG": "Create RAG",
"List RAGs": "List RAGs",
"Get RAG by ID": "Get RAG by ID",
"Update RAG": "Update RAG",
"Delete RAG": "Delete RAG",
"RAG Prompt Completion": "RAG Prompt Completion",
"Create Agent": "Create Agent",
"Add RAG to Agent": "Add RAG to Agent",
"List Agents": "List Agents",
"Delete Agent": "Delete Agent",
"Update Agent": "Update Agent",
"Get Agent Details": "Get Agent Details",
"Agent Prompt Completion": "Agent Prompt Completion",
"Custom API Call": "Custom API Call",
"Enables users to generate prompt completion based on a specified model.": "Enables users to generate prompt completion based on a specified model.",
"Enables users to generate high-quality images based on textual descriptions.": "Enables users to generate high-quality images based on textual descriptions.",
"Upload a file to Straico API for processing.": "Upload a file to Straico API for processing.",
"Create a new RAG (Retrieval-Augmented Generation) base in the database.": "Create a new RAG (Retrieval-Augmented Generation) base in the database.",
"List all RAG (Retrieval-Augmented Generation) bases for a user.": "List all RAG (Retrieval-Augmented Generation) bases for a user.",
"Retrieve a specific RAG (Retrieval-Augmented Generation) base by its ID.": "Retrieve a specific RAG (Retrieval-Augmented Generation) base by its ID.",
"Update an existing RAG (Retrieval-Augmented Generation) base with additional files.": "Update an existing RAG (Retrieval-Augmented Generation) base with additional files.",
"Delete a specific RAG (Retrieval-Augmented Generation) base by its ID.": "Delete a specific RAG (Retrieval-Augmented Generation) base by its ID.",
"Send a prompt to a specific RAG (Retrieval-Augmented Generation) model.": "Send a prompt to a specific RAG (Retrieval-Augmented Generation) model.",
"Creates a new agent in the database for the user.": "Creates a new agent in the database for the user.",
"Adds a new RAG to an agent in the database for the user.": "Adds a new RAG to an agent in the database for the user.",
"Retrieves the list of agents created by and available to the user.": "Retrieves the list of agents created by and available to the user.",
"Delete a specific agent by its ID": "Delete a specific agent by its ID",
"Update the details of a specific agent": "Update the details of a specific agent",
"Retrieve details of a specific agent": "Retrieve details of a specific agent",
"Prompt an agent with a message and get a response": "Prompt an agent with a message and get a response",
"Make a custom API call to a specific endpoint": "Make a custom API call to a specific endpoint",
"Model": "Model",
"Prompt": "Prompt",
"File URLs": "File URLs",
"YouTube URLs": "YouTube URLs",
"Image URLs": "Image URLs",
"Display Transcripts": "Display Transcripts",
"Temperature": "Temperature",
"Max Tokens": "Max Tokens",
"Number of Images": "Number of Images",
"Image Dimensions": "Image Dimensions",
"Description": "Description",
"File": "File",
"Name": "Name",
"Chunking Method": "Chunking Method",
"Chunk Size": "Chunk Size",
"Chunk Overlap": "Chunk Overlap",
"Separator": "Separator",
"Separators": "Separators",
"Breakpoint Threshold Type": "Breakpoint Threshold Type",
"Buffer Size": "Buffer Size",
"RAG ID": "RAG ID",
"Search Type": "Search Type",
"Number of Documents": "Number of Documents",
"Fetch K": "Fetch K",
"Lambda Mult": "Lambda Mult",
"Score Threshold": "Score Threshold",
"Custom Prompt": "Custom Prompt",
"Default LLM": "Default LLM",
"Tags": "Tags",
"Agent": "Agent",
"Status": "Status",
"Visibility": "Visibility",
"Method": "Method",
"Headers": "Headers",
"Query Parameters": "Query Parameters",
"Body": "Body",
"No Error on Failure": "No Error on Failure",
"Timeout (in seconds)": "Timeout (in seconds)",
"The model which will generate the completion. Some models are suitable for natural language tasks, others specialize in code.": "The model which will generate the completion. Some models are suitable for natural language tasks, others specialize in code.",
"The prompt text for which completions are requested": "The prompt text for which completions are requested",
"URLs of files to be processed by the model (maximum 4 URLs), previously uploaded via the File Upload endpoint": "URLs of files to be processed by the model (maximum 4 URLs), previously uploaded via the File Upload endpoint",
"URLs of YouTube videos to be processed by the model (maximum 4 URLs)": "URLs of YouTube videos to be processed by the model (maximum 4 URLs)",
"URLs of images to be processed by the model, previously uploaded via the File Upload endpoint": "URLs of images to be processed by the model, previously uploaded via the File Upload endpoint",
"If true, returns transcripts of the files. Note: Either File URLs or YouTube URLs are required when this is enabled": "If true, returns transcripts of the files. Note: Either File URLs or YouTube URLs are required when this is enabled",
"This setting influences the variety in the model's responses (0-2)": "This setting influences the variety in the model's responses (0-2)",
"Set the limit for the number of tokens the model can generate in response": "Set the limit for the number of tokens the model can generate in response",
"Number of images to generate.": "Number of images to generate.",
"Select the image generation model.": "Select the image generation model.",
"The desired image dimensions.": "The desired image dimensions.",
"A detailed textual description of the image to be generated.": "A detailed textual description of the image to be generated.",
"The file to upload. Supported file types: pdf, docx, pptx, txt, xlsx, mp3, mp4, html, csv, json, py, php, js, css, cs, swift, kt, xml, ts, png, jpg, jpeg, webp, gif": "The file to upload. Supported file types: pdf, docx, pptx, txt, xlsx, mp3, mp4, html, csv, json, py, php, js, css, cs, swift, kt, xml, ts, png, jpg, jpeg, webp, gif",
"Represents the name of the RAG base": "Represents the name of the RAG base",
"Represents the description of the agent": "Represents the description of the agent",
"Represents the file to be attached. Accepted file extensions are: pdf, docx, csv, txt, xlsx, py": "Represents the file to be attached. Accepted file extensions are: pdf, docx, csv, txt, xlsx, py",
"Represents the chunking method to be used for generating the RAG base. The default value is fixed_size": "Represents the chunking method to be used for generating the RAG base. The default value is fixed_size",
"The size of each chunk (default: 1000)": "The size of each chunk (default: 1000)",
"The overlap between chunks (default: 50)": "The overlap between chunks (default: 50)",
"The separator to use for fixed_size chunking method": "The separator to use for fixed_size chunking method",
"The separators to use for recursive chunking method": "The separators to use for recursive chunking method",
"The breakpoint threshold type for semantic chunking method": "The breakpoint threshold type for semantic chunking method",
"The buffer size for semantic chunking method": "The buffer size for semantic chunking method",
"The ID of the RAG base to retrieve.": "The ID of the RAG base to retrieve.",
"The ID of the RAG base to update.": "The ID of the RAG base to update.",
"Represents the file to be attached. Accepted file extensions are: pdf, docx, csv, txt, xlsx, py.": "Represents the file to be attached. Accepted file extensions are: pdf, docx, csv, txt, xlsx, py.",
"The ID of the RAG base to delete": "The ID of the RAG base to delete",
"The ID of the RAG base to query": "The ID of the RAG base to query",
"A text prompt for the RAG model": "A text prompt for the RAG model",
"The specific LLM to be used": "The specific LLM to be used",
"Type of search to perform": "Type of search to perform",
"Number of documents to return": "Number of documents to return",
"Amount of documents to pass to MMR algorithm": "Amount of documents to pass to MMR algorithm",
"Diversity of results return by MMR (1 for minimum and 0 for maximum)": "Diversity of results return by MMR (1 for minimum and 0 for maximum)",
"Minimum relevance threshold for similarity_score_threshold": "Minimum relevance threshold for similarity_score_threshold",
"A name for the agent": "A name for the agent",
"A brief description of what the model does": "A brief description of what the model does",
"A model that the agent will use for processing prompts": "A model that the agent will use for processing prompts",
"The language model which the agent will use for processing prompts": "The language model which the agent will use for processing prompts",
"An array of tags for the agent. Example: [\"assistant\",\"tag\"]": "An array of tags for the agent. Example: [\"assistant\",\"tag\"]",
"The agent to add the RAG to.": "The agent to add the RAG to.",
"The ID of the RAG to add to the agent": "The ID of the RAG to add to the agent",
"Select the agent to delete": "Select the agent to delete",
"Select the agent to update": "Select the agent to update",
"New name for the agent": "New name for the agent",
"New description for the agent": "New description for the agent",
"New custom prompt for the agent": "New custom prompt for the agent",
"New default LLM for the agent": "New default LLM for the agent",
"New status for the agent": "New status for the agent",
"New visibility setting for the agent": "New visibility setting for the agent",
"Select the agent to get details for.": "Select the agent to get details for.",
"Select the agent to prompt.": "Select the agent to prompt.",
"The text prompt for the agent": "The text prompt for the agent",
"The search type to use for RAG model": "The search type to use for RAG model",
"Diversity of results returned by MMR (0 for minimum, 1 for maximum)": "Diversity of results returned by MMR (0 for minimum, 1 for maximum)",
"Authorization headers are injected automatically from your connection.": "Authorization headers are injected automatically from your connection.",
"openai/dall-e-3": "openai/dall-e-3",
"flux/1.1": "flux/1.1",
"ideogram/V_2A": "ideogram/V_2A",
"ideogram/V_2A_TURBO": "ideogram/V_2A_TURBO",
"ideogram/V_2": "ideogram/V_2",
"ideogram/V_2_TURBO": "ideogram/V_2_TURBO",
"ideogram/V_1": "ideogram/V_1",
"ideogram/V_1_TURBO": "ideogram/V_1_TURBO",
"square": "square",
"landscape": "landscape",
"portrait": "portrait",
"Percentile": "Percentile",
"Interquartile": "Interquartile",
"Standard Deviation": "Standard Deviation",
"Gradient": "Gradient",
"Similarity": "Similarity",
"MMR": "MMR",
"Similarity Score Threshold": "Similarity Score Threshold",
"Active": "Active",
"Inactive": "Inactive",
"Private": "Private",
"Public": "Public",
"GET": "GET",
"POST": "POST",
"PATCH": "PATCH",
"PUT": "PUT",
"DELETE": "DELETE",
"HEAD": "HEAD"
}

View File

@@ -0,0 +1,158 @@
{
"1": "1",
"2": "2",
"3": "3",
"4": "4",
"All-in-one generative AI platform": "Gesamte generative KI-Plattform",
"\nFollow these instructions to get your Straico API Key:\n\n1. Visit the following website: https://platform.straico.com/user-settings.\n2. Once on the website, locate \"Connect with Straico API\" and click on the copy API Key.\n": "\nFolge diesen Anweisungen, um deinen Straico API Key zu erhalten:\n\n1. Besuche die folgende Website: https://platform.straico. om/user-settings.\n2. Wenn Sie auf der Website sind, suchen Sie \"Mit Straico API verbinden\" und klicken Sie auf den Copy-API-Schlüssel.\n",
"Ask AI": "KI fragen",
"Image Generation": "Bildgenerierung",
"Upload File": "Datei hochladen",
"Create RAG": "RAG erstellen",
"List RAGs": "Listen-RAGs",
"Get RAG by ID": "Hole RAG per ID",
"Update RAG": "RAG aktualisieren",
"Delete RAG": "RAG löschen",
"RAG Prompt Completion": "RAG Prompt Fertigstellung",
"Create Agent": "Agenten erstellen",
"Add RAG to Agent": "RAG zum Agent hinzufügen",
"List Agents": "Agenten auflisten",
"Delete Agent": "Agenten löschen",
"Update Agent": "Agent aktualisieren",
"Get Agent Details": "Agenten-Details abrufen",
"Agent Prompt Completion": "Agentenabfrage abgeschlossen",
"Custom API Call": "Eigener API-Aufruf",
"Enables users to generate prompt completion based on a specified model.": "Ermöglicht Benutzern die Fertigstellung der Eingabeaufforderung basierend auf einem bestimmten Modell.",
"Enables users to generate high-quality images based on textual descriptions.": "Ermöglicht dem Benutzer, qualitativ hochwertige Bilder auf der Grundlage textueller Beschreibungen zu generieren.",
"Upload a file to Straico API for processing.": "Laden Sie eine Datei zur Verarbeitung auf Straico API hoch.",
"Create a new RAG (Retrieval-Augmented Generation) base in the database.": "Erstellen Sie eine neue RAG-Datenbank (Retrieval-Augmented Generation) in der Datenbank.",
"List all RAG (Retrieval-Augmented Generation) bases for a user.": "Listet alle RAG-Datenbanken (Retrieval-Augmented Generation) für einen Benutzer auf.",
"Retrieve a specific RAG (Retrieval-Augmented Generation) base by its ID.": "Abrufen einer spezifischen RAG-Basis (Retrieval-Augmented Generation) durch ihre ID.",
"Update an existing RAG (Retrieval-Augmented Generation) base with additional files.": "Aktualisieren Sie eine vorhandene RAG-Datenbank (Retrieval-Augmented Generation) mit zusätzlichen Dateien.",
"Delete a specific RAG (Retrieval-Augmented Generation) base by its ID.": "Löschen einer spezifischen RAG-Basis (Retrieval-Augmented Generation) durch ihre ID.",
"Send a prompt to a specific RAG (Retrieval-Augmented Generation) model.": "Senden Sie eine Aufforderung an ein bestimmtes RAG-Modell (Retrieval-Augmented Generation) .",
"Creates a new agent in the database for the user.": "Erstellt einen neuen Agenten in der Datenbank für den Benutzer.",
"Adds a new RAG to an agent in the database for the user.": "Fügt einen neuen RAG einem Agenten in der Datenbank für den Benutzer hinzu.",
"Retrieves the list of agents created by and available to the user.": "Ruft die Liste der Agenten ab, die von und für den Benutzer erstellt wurden.",
"Delete a specific agent by its ID": "Einen bestimmten Agenten durch seine ID löschen",
"Update the details of a specific agent": "Details eines bestimmten Agenten aktualisieren",
"Retrieve details of a specific agent": "Details eines bestimmten Agenten abrufen",
"Prompt an agent with a message and get a response": "Einen Agenten mit einer Nachricht anfragen und eine Antwort erhalten",
"Make a custom API call to a specific endpoint": "Einen benutzerdefinierten API-Aufruf an einen bestimmten Endpunkt machen",
"Model": "Modell",
"Prompt": "Prompt",
"File URLs": "Datei-URLs",
"YouTube URLs": "YouTube URLs",
"Image URLs": "Bild-URLs",
"Display Transcripts": "Transkript anzeigen",
"Temperature": "Temperatur",
"Max Tokens": "Max. Token",
"Number of Images": "Anzahl der Bilder",
"Image Dimensions": "Bildgröße",
"Description": "Beschreibung",
"File": "Datei",
"Name": "Name",
"Chunking Method": "Chunking-Methode",
"Chunk Size": "Chunk-Größe",
"Chunk Overlap": "Chunk-Überlappung",
"Separator": "Trennzeichen",
"Separators": "Trennzeichen",
"Breakpoint Threshold Type": "Haltepunkt-Grenzwert Typ",
"Buffer Size": "Puffergröße",
"RAG ID": "RAG ID",
"Search Type": "Suchtyp",
"Number of Documents": "Anzahl der Dokumente",
"Fetch K": "Hole K",
"Lambda Mult": "Lambda Mult",
"Score Threshold": "Punktestand Grenzwert",
"Custom Prompt": "Benutzerdefinierte Aufforderung",
"Default LLM": "Standard LLM",
"Tags": "Tags",
"Agent": "Agent",
"Status": "Status",
"Visibility": "Sichtbarkeit",
"Method": "Methode",
"Headers": "Kopfzeilen",
"Query Parameters": "Abfrageparameter",
"Body": "Körper",
"Response is Binary ?": "Antwort ist binär?",
"No Error on Failure": "Kein Fehler bei Fehler",
"Timeout (in seconds)": "Timeout (in Sekunden)",
"The model which will generate the completion. Some models are suitable for natural language tasks, others specialize in code.": "Das Modell, das die Vervollständigung generiert. Einige Modelle eignen sich für Aufgaben der natürlichen Sprache, andere sind auf Code spezialisiert.",
"The prompt text for which completions are requested": "Der Text der Eingabeaufforderung, für die Vervollständigungen angefordert werden",
"URLs of files to be processed by the model (maximum 4 URLs), previously uploaded via the File Upload endpoint": "URLs von Dateien, die vom Modell verarbeitet werden sollen (maximal 4 URLs), die zuvor über den Datei-Upload-Endpunkt hochgeladen wurden",
"URLs of YouTube videos to be processed by the model (maximum 4 URLs)": "URLs von YouTube-Videos, die vom Modell verarbeitet werden sollen (maximal 4 URLs)",
"URLs of images to be processed by the model, previously uploaded via the File Upload endpoint": "URLs von Bildern, die durch das Modell bearbeitet werden sollen, das zuvor über den Datei-Upload-Endpunkt hochgeladen wurde",
"If true, returns transcripts of the files. Note: Either File URLs or YouTube URLs are required when this is enabled": "Wenn aktiviert, gibt die Protokolle der Dateien zurück. Hinweis: Entweder Datei-URLs oder YouTube-URLs sind erforderlich, wenn dies aktiviert ist",
"This setting influences the variety in the model's responses (0-2)": "Diese Einstellung beeinflusst die Vielfalt der Antworten des Modells (0-2)",
"Set the limit for the number of tokens the model can generate in response": "Legen Sie das Limit für die Anzahl der Tokens fest, die das Modell als Antwort generieren kann",
"Number of images to generate.": "Anzahl der zu generierenden Bilder.",
"Select the image generation model.": "Wählen Sie das Modell der Bildgenerierung.",
"The desired image dimensions.": "Die gewünschte Bilddimension.",
"A detailed textual description of the image to be generated.": "Eine detaillierte textuelle Beschreibung des zu erstellenden Bildes.",
"The file to upload. Supported file types: pdf, docx, pptx, txt, xlsx, mp3, mp4, html, csv, json, py, php, js, css, cs, swift, kt, xml, ts, png, jpg, jpeg, webp, gif": "Die hochzuladende Datei. Unterstützte Dateitypen: pdf, docx, pptx, txt, xlsx, mp3, mp4, html, csv, json, py, php, js, css, cs, swift, kt, xml, ts, png, jpg, jpeg, webp, gif",
"Represents the name of the RAG base": "Stellt den Namen der RAG-Basis dar",
"Represents the description of the agent": "Repräsentiert die Beschreibung des Agenten",
"Represents the file to be attached. Accepted file extensions are: pdf, docx, csv, txt, xlsx, py": "Stellt die anzuhängende Datei dar. Akzeptierte Dateiendungen sind: pdf, docx, csv, txt, xlsx, py",
"Represents the chunking method to be used for generating the RAG base. The default value is fixed_size": "Stellt die chunking-Methode zur Generierung der RAG-Basis dar. Der Standardwert ist fixed_size",
"The size of each chunk (default: 1000)": "Die Größe jedes Chunks (Standard: 1000)",
"The overlap between chunks (default: 50)": "Die Überlappung zwischen Chunks (Standard: 50)",
"The separator to use for fixed_size chunking method": "Das Trennzeichen für fixed_size Chunking-Methode",
"The separators to use for recursive chunking method": "Die Trennzeichen, die für rekursive Chunking-Methode verwendet werden sollen",
"The breakpoint threshold type for semantic chunking method": "Der Haltepunkt Schwellentyp für semantische Chunking-Methode",
"The buffer size for semantic chunking method": "Die Puffergröße für semantische Chunking-Methode",
"The ID of the RAG base to retrieve.": "Die ID des RAG-Stützpunkts zu ermitteln.",
"The ID of the RAG base to update.": "Die ID der RAG-Basis zur Aktualisierung.",
"Represents the file to be attached. Accepted file extensions are: pdf, docx, csv, txt, xlsx, py.": "Stellt die anzuhängende Datei dar. Akzeptierte Dateiendungen sind: pdf, docx, csv, txt, xlsx, py.",
"The ID of the RAG base to delete": "Die ID der zu löschenden RAG-Basis",
"The ID of the RAG base to query": "Die ID der RAG-Basis zum Abfragen",
"A text prompt for the RAG model": "Eine Textabfrage für das RAG-Modell",
"The specific LLM to be used": "Spezifische LLM",
"Type of search to perform": "Art der durchzuführenden Suche",
"Number of documents to return": "Anzahl der zurückzusenden Dokumente",
"Amount of documents to pass to MMR algorithm": "Anzahl der Dokumente, die an den MMR-Algorithmus übergeben werden sollen",
"Diversity of results return by MMR (1 for minimum and 0 for maximum)": "Vielfalt der Ergebnisse gibt von MMR zurück (1 für Minimum und 0 für Maximum)",
"Minimum relevance threshold for similarity_score_threshold": "Minimale Relevanzschwelle für Ähnlichkeit_Punktestand_Schwellenwert",
"A name for the agent": "Name des Agenten",
"A brief description of what the model does": "Eine kurze Beschreibung dessen, was das Modell macht",
"A model that the agent will use for processing prompts": "Ein Modell, das der Agent für die Verarbeitung von Eingabeaufforderungen verwendet",
"The language model which the agent will use for processing prompts": "Das Sprachmodell, das der Agent für die Verarbeitung der Eingabeaufforderungen verwenden wird",
"An array of tags for the agent. Example: [\"assistant\",\"tag\"]": "Ein Array von Tags für den Agenten. Beispiel: [\"Assistant\",\"tag\"]",
"The agent to add the RAG to.": "Der Vermittler zum Hinzufügen der RAG zu.",
"The ID of the RAG to add to the agent": "Die ID des RAG-Agenten hinzufügen",
"Select the agent to delete": "Agent zum Löschen auswählen",
"Select the agent to update": "Wählen Sie den zu aktualisierenden Agenten",
"New name for the agent": "Neuer Name für den Agent",
"New description for the agent": "Neue Beschreibung für den Agenten",
"New custom prompt for the agent": "Neue benutzerdefinierte Aufforderung für den Agent",
"New default LLM for the agent": "Neue Standard LLM für den Agent",
"New status for the agent": "Neuer Status für den Agenten",
"New visibility setting for the agent": "Neue Sichtbarkeitseinstellung für den Agent",
"Select the agent to get details for.": "Wählen Sie den Agenten, um Details zu erhalten.",
"Select the agent to prompt.": "Wählen Sie den zu fragenden Agenten.",
"The text prompt for the agent": "Die Textanfrage für den Agenten",
"The search type to use for RAG model": "Der Suchtyp für RAG-Modell",
"Diversity of results returned by MMR (0 for minimum, 1 for maximum)": "Vielfalt der von MMR zurückgegebenen Ergebnisse (0 für Minimum, 1 für Maximum)",
"Authorization headers are injected automatically from your connection.": "Autorisierungs-Header werden automatisch von Ihrer Verbindung injiziert.",
"Enable for files like PDFs, images, etc..": "Aktivieren für Dateien wie PDFs, Bilder, etc..",
"square": "quadratisch",
"landscape": "landschaftlich",
"portrait": "hochladen",
"Percentile": "Prozentsatz",
"Interquartile": "Interquartile",
"Standard Deviation": "Standardabweichung",
"Gradient": "Farbverlauf",
"Similarity": "Ähnlichkeit",
"MMR": "MMR",
"Similarity Score Threshold": "Ähnlichkeitswert Punktestand Grenzwert",
"Active": "Aktiv",
"Inactive": "Inaktiv",
"Private": "Privat",
"Public": "Öffentlich",
"GET": "ERHALTEN",
"POST": "POST",
"PATCH": "PATCH",
"PUT": "PUT",
"DELETE": "LÖSCHEN",
"HEAD": "HEAD"
}

View File

@@ -0,0 +1,158 @@
{
"1": "1",
"2": "2",
"3": "3",
"4": "4",
"All-in-one generative AI platform": "Plataforma de IA generativa Todo en uno",
"\nFollow these instructions to get your Straico API Key:\n\n1. Visit the following website: https://platform.straico.com/user-settings.\n2. Once on the website, locate \"Connect with Straico API\" and click on the copy API Key.\n": "\nSigue estas instrucciones para obtener tu clave API de Straico\n\n1. Visita el siguiente sitio web: https://platform.straico. om/configuración de usuario.\n2. Una vez en el sitio web, localice \"Connect with Straico API\" y haga clic en la copia de la clave API.\n",
"Ask AI": "Preguntar IA",
"Image Generation": "Generación de imágenes",
"Upload File": "Subir archivo",
"Create RAG": "Crear RAG",
"List RAGs": "Lista de RAGs",
"Get RAG by ID": "Obtener RAG por ID",
"Update RAG": "Actualizar RAG",
"Delete RAG": "Eliminar RAG",
"RAG Prompt Completion": "Finalización del comprobante RAG",
"Create Agent": "Crear agente",
"Add RAG to Agent": "Añadir RAG al agente",
"List Agents": "Listar agentes",
"Delete Agent": "Eliminar agente",
"Update Agent": "Actualizar agente",
"Get Agent Details": "Obtener detalles del agente",
"Agent Prompt Completion": "Completado de comprobación del agente",
"Custom API Call": "Llamada API personalizada",
"Enables users to generate prompt completion based on a specified model.": "Permite a los usuarios generar un prompt completion basado en un modelo especificado.",
"Enables users to generate high-quality images based on textual descriptions.": "Permite a los usuarios generar imágenes de alta calidad basadas en descripciones textuales.",
"Upload a file to Straico API for processing.": "Subir un archivo a Straico API para procesar.",
"Create a new RAG (Retrieval-Augmented Generation) base in the database.": "Crear una nueva base RAG (Retrieval-Augmented Generation) en la base de datos.",
"List all RAG (Retrieval-Augmented Generation) bases for a user.": "Listar todas las bases RAG (Retrieval-Augmented Generation) para un usuario.",
"Retrieve a specific RAG (Retrieval-Augmented Generation) base by its ID.": "Recuperar una base específica de RAG (Retrieval-Augmented Generation) por su ID.",
"Update an existing RAG (Retrieval-Augmented Generation) base with additional files.": "Actualice una base RAG existente (Retrieval-Augmented Generation) con archivos adicionales.",
"Delete a specific RAG (Retrieval-Augmented Generation) base by its ID.": "Elimine una base específica de RAG (Retrieval-Augmented Generation) por su ID.",
"Send a prompt to a specific RAG (Retrieval-Augmented Generation) model.": "Enviar un aviso a un modelo específico de RAG (Retrieval-Augmented Generation).",
"Creates a new agent in the database for the user.": "Crea un nuevo agente en la base de datos para el usuario.",
"Adds a new RAG to an agent in the database for the user.": "Añade un nuevo RAG a un agente en la base de datos para el usuario.",
"Retrieves the list of agents created by and available to the user.": "Recuperar la lista de agentes creados por y disponibles para el usuario.",
"Delete a specific agent by its ID": "Eliminar un agente específico por su ID",
"Update the details of a specific agent": "Actualizar los detalles de un agente específico",
"Retrieve details of a specific agent": "Recuperar detalles de un agente específico",
"Prompt an agent with a message and get a response": "Recibe un agente con un mensaje y recibe una respuesta",
"Make a custom API call to a specific endpoint": "Hacer una llamada API personalizada a un extremo específico",
"Model": "Modelo",
"Prompt": "Petición",
"File URLs": "URLs de archivo",
"YouTube URLs": "URLs de YouTube",
"Image URLs": "URLs de imagen",
"Display Transcripts": "Mostrar transcripciones",
"Temperature": "Temperatura",
"Max Tokens": "Tokens máximos",
"Number of Images": "Número de imágenes",
"Image Dimensions": "Dimensiones de imagen",
"Description": "Descripción",
"File": "Archivo",
"Name": "Nombre",
"Chunking Method": "Método de Chunking",
"Chunk Size": "Tamaño Chunk",
"Chunk Overlap": "Superposición de trozo",
"Separator": "Separador",
"Separators": "Separadores",
"Breakpoint Threshold Type": "Umbral de punto de ruptura",
"Buffer Size": "Tamaño del búfer",
"RAG ID": "RAG ID",
"Search Type": "Tipo de búsqueda",
"Number of Documents": "Número de documentos",
"Fetch K": "Obtener K",
"Lambda Mult": "Lambda Mult",
"Score Threshold": "Umbral de puntuación",
"Custom Prompt": "Prompt personalizado",
"Default LLM": "LLM por defecto",
"Tags": "Etiquetas",
"Agent": "Agente",
"Status": "Estado",
"Visibility": "Visibilidad",
"Method": "Método",
"Headers": "Encabezados",
"Query Parameters": "Parámetros de consulta",
"Body": "Cuerpo",
"Response is Binary ?": "¿Respuesta es binaria?",
"No Error on Failure": "No hay ningún error en fallo",
"Timeout (in seconds)": "Tiempo de espera (en segundos)",
"The model which will generate the completion. Some models are suitable for natural language tasks, others specialize in code.": "El modelo que generará la terminación. Algunos modelos son adecuados para tareas de lenguaje natural, otros se especializan en código.",
"The prompt text for which completions are requested": "El texto del prompt para el que se solicitan las completaciones",
"URLs of files to be processed by the model (maximum 4 URLs), previously uploaded via the File Upload endpoint": "URLs de archivos a procesar por el modelo (máximo 4 URLs), previamente subidos a través del punto final de carga de archivos",
"URLs of YouTube videos to be processed by the model (maximum 4 URLs)": "URLs de vídeos de YouTube a procesar por el modelo (máximo 4 URLs)",
"URLs of images to be processed by the model, previously uploaded via the File Upload endpoint": "URLs de las imágenes que serán procesadas por el modelo, previamente subidas a través del punto final de carga de archivos",
"If true, returns transcripts of the files. Note: Either File URLs or YouTube URLs are required when this is enabled": "Si es verdadero, devuelve transcripciones de los archivos. Nota: Las URLs de archivos o las URLs de YouTube son requeridas cuando está habilitado",
"This setting influences the variety in the model's responses (0-2)": "Esta configuración influye en la variedad en las respuestas del modelo (0-2)",
"Set the limit for the number of tokens the model can generate in response": "Establecer el límite para el número de tokens que el modelo puede generar en respuesta",
"Number of images to generate.": "Número de imágenes a generar.",
"Select the image generation model.": "Seleccione el modelo de generación de imágenes.",
"The desired image dimensions.": "Las dimensiones de la imagen deseadas.",
"A detailed textual description of the image to be generated.": "Una descripción textual detallada de la imagen a generar.",
"The file to upload. Supported file types: pdf, docx, pptx, txt, xlsx, mp3, mp4, html, csv, json, py, php, js, css, cs, swift, kt, xml, ts, png, jpg, jpeg, webp, gif": "El archivo a subir. Tipos de archivo soportados: pdf, docx, pptx, txt, xlsx, mp3, mp4, html, csv, json, py, php, js, css, swift, kt, xml, ts, png, jpg, jpeg, webp, gif",
"Represents the name of the RAG base": "Representa el nombre de la base RAG",
"Represents the description of the agent": "Representa la descripción del agente",
"Represents the file to be attached. Accepted file extensions are: pdf, docx, csv, txt, xlsx, py": "Representa el archivo a ser adjunto. Las extensiones aceptadas son: pdf, docx, csv, txt, xlsx, py",
"Represents the chunking method to be used for generating the RAG base. The default value is fixed_size": "Representa el método de chunking que se utilizará para generar la base RAG. El valor predeterminado es fixed_size",
"The size of each chunk (default: 1000)": "El tamaño de cada trozo (por defecto: 1000)",
"The overlap between chunks (default: 50)": "La superposición entre trozos (por defecto: 50)",
"The separator to use for fixed_size chunking method": "El separador a usar para el método de chunking fixed_size",
"The separators to use for recursive chunking method": "Los separadores a usar para el método de trozo recursivo",
"The breakpoint threshold type for semantic chunking method": "Tipo de umbral de punto de interrupción para el método de corte semántico",
"The buffer size for semantic chunking method": "Tamaño del búfer para el método de fragmentación semántica",
"The ID of the RAG base to retrieve.": "El ID de la base RAG a recuperar.",
"The ID of the RAG base to update.": "El ID de la base de RAG a actualizar.",
"Represents the file to be attached. Accepted file extensions are: pdf, docx, csv, txt, xlsx, py.": "Representa el archivo a ser adjunto. Las extensiones aceptadas son: pdf, docx, csv, txt, xlsx, py.",
"The ID of the RAG base to delete": "El ID de la base RAG a eliminar",
"The ID of the RAG base to query": "El ID de la base RAG a consultar",
"A text prompt for the RAG model": "Un mensaje de texto para el modelo RAG",
"The specific LLM to be used": "El LLM específico a ser usado",
"Type of search to perform": "Tipo de búsqueda a realizar",
"Number of documents to return": "Número de documentos a devolver",
"Amount of documents to pass to MMR algorithm": "Cantidad de documentos a pasar al algoritmo MMR",
"Diversity of results return by MMR (1 for minimum and 0 for maximum)": "Diversidad de resultados por MMR (1 para mínimo y 0 para máximo)",
"Minimum relevance threshold for similarity_score_threshold": "Umbral mínimo de relevancia para similarity_score_threshold",
"A name for the agent": "Un nombre para el agente",
"A brief description of what the model does": "Una breve descripción de lo que hace el modelo",
"A model that the agent will use for processing prompts": "Un modelo que el agente utilizará para procesar peticiones",
"The language model which the agent will use for processing prompts": "El modelo de idioma que el agente utilizará para procesar peticiones",
"An array of tags for the agent. Example: [\"assistant\",\"tag\"]": "Un array de etiquetas para el agente. Ejemplo: [\"assistant\",\"tag\"]",
"The agent to add the RAG to.": "El agente a añadir el RAG.",
"The ID of the RAG to add to the agent": "El ID del RAG para añadir al agente",
"Select the agent to delete": "Seleccione el agente a eliminar",
"Select the agent to update": "Seleccione el agente a actualizar",
"New name for the agent": "Nuevo nombre para el agente",
"New description for the agent": "Nueva descripción para el agente",
"New custom prompt for the agent": "Nuevo aviso personalizado para el agente",
"New default LLM for the agent": "Nuevo LLM por defecto para el agente",
"New status for the agent": "Nuevo estado para el agente",
"New visibility setting for the agent": "Nueva configuración de visibilidad para el agente",
"Select the agent to get details for.": "Seleccione el agente para obtener detalles.",
"Select the agent to prompt.": "Seleccione el agente a pedir.",
"The text prompt for the agent": "El mensaje de texto para el agente",
"The search type to use for RAG model": "El tipo de búsqueda a utilizar para el modelo RAG",
"Diversity of results returned by MMR (0 for minimum, 1 for maximum)": "Diversidad de resultados devueltos por MMR (0 para mínimo, 1 para máximo)",
"Authorization headers are injected automatically from your connection.": "Las cabeceras de autorización se inyectan automáticamente desde tu conexión.",
"Enable for files like PDFs, images, etc..": "Activar para archivos como PDFs, imágenes, etc.",
"square": "cuadrado",
"landscape": "apaisado",
"portrait": "retrato",
"Percentile": "Percentil",
"Interquartile": "Interquartile",
"Standard Deviation": "Desviación estándar",
"Gradient": "Gradiente",
"Similarity": "similaridad",
"MMR": "MM",
"Similarity Score Threshold": "Umbral de puntuación de similaridad",
"Active": "Activo",
"Inactive": "Inactivo",
"Private": "Privado",
"Public": "Público",
"GET": "RECOGER",
"POST": "POST",
"PATCH": "PATCH",
"PUT": "PUT",
"DELETE": "BORRAR",
"HEAD": "LIMPIO"
}

View File

@@ -0,0 +1,158 @@
{
"1": "1",
"2": "2",
"3": "3",
"4": "4",
"All-in-one generative AI platform": "Plateforme IA génératrice tout-en-un",
"\nFollow these instructions to get your Straico API Key:\n\n1. Visit the following website: https://platform.straico.com/user-settings.\n2. Once on the website, locate \"Connect with Straico API\" and click on the copy API Key.\n": "\nFollow these instructions to get your Straico API Key:\n\n1. Visit the following website: https://platform.straico.com/user-settings.\n2. Once on the website, locate \"Connect with Straico API\" and click on the copy API Key.\n",
"Ask AI": "Demander à l'IA",
"Image Generation": "Génération de l'image",
"Upload File": "Charger un fichier",
"Create RAG": "Créer un RAG",
"List RAGs": "Lister les RAG",
"Get RAG by ID": "Obtenir RAG par ID",
"Update RAG": "Mettre à jour le RAG",
"Delete RAG": "Supprimer le RAG",
"RAG Prompt Completion": "Achèvement de la demande RAG",
"Create Agent": "Créer un agent",
"Add RAG to Agent": "Ajouter un RAG à l'Agent",
"List Agents": "Liste des agents",
"Delete Agent": "Supprimer l'agent",
"Update Agent": "Mise à jour de l'agent",
"Get Agent Details": "Obtenir les détails de l'agent",
"Agent Prompt Completion": "Proposition d'achèvement de l'agent",
"Custom API Call": "Appel d'API personnalisé",
"Enables users to generate prompt completion based on a specified model.": "Permet aux utilisateurs de générer une réalisation rapide basée sur un modèle spécifié.",
"Enables users to generate high-quality images based on textual descriptions.": "Permet aux utilisateurs de générer des images de haute qualité basées sur des descriptions textuelles.",
"Upload a file to Straico API for processing.": "Télécharger un fichier sur l'API Straico pour le traitement.",
"Create a new RAG (Retrieval-Augmented Generation) base in the database.": "Créer une nouvelle base de données RAG (Retrieval-Augmented Generation) dans la base de données.",
"List all RAG (Retrieval-Augmented Generation) bases for a user.": "Liste toutes les bases RAG (génération augmentée de récupération) pour un utilisateur.",
"Retrieve a specific RAG (Retrieval-Augmented Generation) base by its ID.": "Récupérer une base RAG spécifique (Retrieval-Augmented Generation) par son ID.",
"Update an existing RAG (Retrieval-Augmented Generation) base with additional files.": "Mettre à jour une base RAG existante (Génération augmentée de récupération) avec des fichiers supplémentaires.",
"Delete a specific RAG (Retrieval-Augmented Generation) base by its ID.": "Supprimer une base RAG spécifique (Retrieval-Augmented Generation) par son ID.",
"Send a prompt to a specific RAG (Retrieval-Augmented Generation) model.": "Envoyer une invite à un modèle RAG spécifique (Retrieval-Augmented Generation).",
"Creates a new agent in the database for the user.": "Crée un nouvel agent dans la base de données pour l'utilisateur.",
"Adds a new RAG to an agent in the database for the user.": "Ajoute un nouveau RAG à un agent dans la base de données pour l'utilisateur.",
"Retrieves the list of agents created by and available to the user.": "Récupère la liste des agents créés par et disponibles pour l'utilisateur.",
"Delete a specific agent by its ID": "Supprimer un agent spécifique par son ID",
"Update the details of a specific agent": "Mettre à jour les détails d'un agent spécifique",
"Retrieve details of a specific agent": "Récupérer les détails d'un agent spécifique",
"Prompt an agent with a message and get a response": "Invitez un agent avec un message et obtenez une réponse",
"Make a custom API call to a specific endpoint": "Passer un appel API personnalisé à un endpoint spécifique",
"Model": "Modélisation",
"Prompt": "Prompt",
"File URLs": "URL du fichier",
"YouTube URLs": "URL YouTube",
"Image URLs": "URL de l'image",
"Display Transcripts": "Afficher les transcriptions",
"Temperature": "Température",
"Max Tokens": "Tokens max",
"Number of Images": "Nombre d'images",
"Image Dimensions": "Dimensions de l'image",
"Description": "Libellé",
"File": "Ficher",
"Name": "Nom",
"Chunking Method": "Méthode de chunking",
"Chunk Size": "Taille du tronçon",
"Chunk Overlap": "Chevauchement de tronçons",
"Separator": "Séparateur",
"Separators": "Séparateurs",
"Breakpoint Threshold Type": "Type de seuil de point darrêt",
"Buffer Size": "Taille du tampon",
"RAG ID": "RAG ID",
"Search Type": "Type de recherche",
"Number of Documents": "Nombre de documents",
"Fetch K": "Récupérer K",
"Lambda Mult": "Lambda Mult",
"Score Threshold": "Seuil de score",
"Custom Prompt": "Invitation personnalisée",
"Default LLM": "LLM par défaut",
"Tags": "Tags",
"Agent": "Agent",
"Status": "Statut",
"Visibility": "Visibilité",
"Method": "Méthode",
"Headers": "En-têtes",
"Query Parameters": "Paramètres de requête",
"Body": "Corps",
"Response is Binary ?": "La réponse est Binaire ?",
"No Error on Failure": "Aucune erreur en cas d'échec",
"Timeout (in seconds)": "Délai d'expiration (en secondes)",
"The model which will generate the completion. Some models are suitable for natural language tasks, others specialize in code.": "Le modèle qui va générer la complétion. Certains modèles sont adaptés aux tâches de langage naturel, d'autres se spécialisent dans le code.",
"The prompt text for which completions are requested": "Le texte d'invitation pour lequel les compléments sont demandés",
"URLs of files to be processed by the model (maximum 4 URLs), previously uploaded via the File Upload endpoint": "URL des fichiers à traiter par le modèle (maximum 4 URLs), précédemment téléchargés via le point de terminaison de téléchargement de fichier",
"URLs of YouTube videos to be processed by the model (maximum 4 URLs)": "URL des vidéos YouTube à traiter par le modèle (maximum 4 URLs)",
"URLs of images to be processed by the model, previously uploaded via the File Upload endpoint": "URL des images à traiter par le modèle, précédemment téléchargées via le point de terminaison de téléchargement de fichier",
"If true, returns transcripts of the files. Note: Either File URLs or YouTube URLs are required when this is enabled": "Si vrai, retourne les transcriptions des fichiers. Note: Soit les URL de fichier ou les URL YouTube sont requises lorsque cette option est activée",
"This setting influences the variety in the model's responses (0-2)": "Ce paramètre influence la variété des réponses du modèle (0-2)",
"Set the limit for the number of tokens the model can generate in response": "Définir la limite pour le nombre de jetons que le modèle peut générer en réponse",
"Number of images to generate.": "Nombre d'images à générer.",
"Select the image generation model.": "Sélectionnez le modèle de génération d'image.",
"The desired image dimensions.": "Les dimensions d'image souhaitées.",
"A detailed textual description of the image to be generated.": "Une description textuelle détaillée de l'image à générer.",
"The file to upload. Supported file types: pdf, docx, pptx, txt, xlsx, mp3, mp4, html, csv, json, py, php, js, css, cs, swift, kt, xml, ts, png, jpg, jpeg, webp, gif": "Le fichier à télécharger. Types de fichiers supportés : pdf, docx, pptx, txt, xlsx, mp3, mp4, html, csv, json, py, php, js, css, cs, swift, kt, xml, ts, png, jpg, jpeg, webp, gif",
"Represents the name of the RAG base": "Représente le nom de la base RAG",
"Represents the description of the agent": "Représente la description de l'agent",
"Represents the file to be attached. Accepted file extensions are: pdf, docx, csv, txt, xlsx, py": "Représente le fichier à joindre. Les extensions de fichier acceptées sont: pdf, docx, csv, txt, xlsx, py",
"Represents the chunking method to be used for generating the RAG base. The default value is fixed_size": "Représente la méthode de chunking à utiliser pour générer la base RAG. La valeur par défaut est fixed_size",
"The size of each chunk (default: 1000)": "La taille de chaque chunk (par défaut : 1000)",
"The overlap between chunks (default: 50)": "Le chevauchement entre les chunks (par défaut: 50)",
"The separator to use for fixed_size chunking method": "Le séparateur à utiliser pour le chunking fixed_size",
"The separators to use for recursive chunking method": "Les séparateurs à utiliser pour la méthode de chunking récursif",
"The breakpoint threshold type for semantic chunking method": "Le type de seuil de point d'arrêt pour la méthode de découpage sémantique",
"The buffer size for semantic chunking method": "La taille du tampon pour la méthode de chunking sémantique",
"The ID of the RAG base to retrieve.": "L'ID de la base RAG à récupérer.",
"The ID of the RAG base to update.": "L'ID de la base RAG à mettre à jour.",
"Represents the file to be attached. Accepted file extensions are: pdf, docx, csv, txt, xlsx, py.": "Représente le fichier à joindre. Les extensions de fichier acceptées sont: pdf, docx, csv, txt, xlsx, py.",
"The ID of the RAG base to delete": "L'ID de la base RAG à supprimer",
"The ID of the RAG base to query": "L'ID de la base RAG à la requête",
"A text prompt for the RAG model": "Une invite de texte pour le modèle RAG",
"The specific LLM to be used": "Le LLM spécifique à utiliser",
"Type of search to perform": "Type de recherche à effectuer",
"Number of documents to return": "Nombre de documents à retourner",
"Amount of documents to pass to MMR algorithm": "Quantité de documents à passer à l'algorithme MMR",
"Diversity of results return by MMR (1 for minimum and 0 for maximum)": "Diversité des résultats retournés par MMR (1 pour minimum et 0 pour maximum)",
"Minimum relevance threshold for similarity_score_threshold": "Seuil de pertinence minimum pour similarity_score_threshold",
"A name for the agent": "Un nom pour l'agent",
"A brief description of what the model does": "Une brève description de ce que fait le modèle",
"A model that the agent will use for processing prompts": "Un modèle que l'agent utilisera pour traiter les invites",
"The language model which the agent will use for processing prompts": "Le modèle de langue que l'agent utilisera pour traiter les invites",
"An array of tags for the agent. Example: [\"assistant\",\"tag\"]": "Un tableau de tags pour l'agent. Exemple: [\"assistant\",\"tag\"]",
"The agent to add the RAG to.": "L'agent à ajouter au RAG à.",
"The ID of the RAG to add to the agent": "L'ID du RAG à ajouter à l'agent",
"Select the agent to delete": "Sélectionnez l'agent à supprimer",
"Select the agent to update": "Sélectionnez l'agent à mettre à jour",
"New name for the agent": "Nouveau nom pour l'agent",
"New description for the agent": "Nouvelle description pour l'agent",
"New custom prompt for the agent": "Nouvelle invite personnalisée pour l'agent",
"New default LLM for the agent": "Nouveau LLM par défaut pour l'agent",
"New status for the agent": "Nouveau statut pour l'agent",
"New visibility setting for the agent": "Nouveau paramètre de visibilité pour l'agent",
"Select the agent to get details for.": "Sélectionnez l'agent pour lequel obtenir les détails.",
"Select the agent to prompt.": "Sélectionnez l'agent à inviter.",
"The text prompt for the agent": "L'invite de texte pour l'agent",
"The search type to use for RAG model": "Le type de recherche à utiliser pour le modèle RAG",
"Diversity of results returned by MMR (0 for minimum, 1 for maximum)": "Diversité des résultats retournés par MMR (0 pour minimum, 1 pour maximum)",
"Authorization headers are injected automatically from your connection.": "Les en-têtes d'autorisation sont injectés automatiquement à partir de votre connexion.",
"Enable for files like PDFs, images, etc..": "Activer pour les fichiers comme les PDFs, les images, etc.",
"square": "carré",
"landscape": "en mode paysage",
"portrait": "Portrait",
"Percentile": "Pourcentage",
"Interquartile": "Interquartile",
"Standard Deviation": "Écart-type",
"Gradient": "Dégradé",
"Similarity": "Similitude",
"MMR": "MMR",
"Similarity Score Threshold": "Seuil de score de similitude",
"Active": "Actif",
"Inactive": "Inactif",
"Private": "Privé",
"Public": "Publique",
"GET": "GET",
"POST": "POST",
"PATCH": "PATCH",
"PUT": "PUT",
"DELETE": "DELETE",
"HEAD": "HEAD"
}

View File

@@ -0,0 +1,165 @@
{
"1": "1",
"2": "2",
"3": "3",
"4": "4",
"Straico": "Straico",
"All-in-one generative AI platform": "All-in-one generative AI platform",
"\nFollow these instructions to get your Straico API Key:\n\n1. Visit the following website: https://platform.straico.com/user-settings.\n2. Once on the website, locate \"Connect with Straico API\" and click on the copy API Key.\n": "\nFollow these instructions to get your Straico API Key:\n\n1. Visit the following website: https://platform.straico.com/user-settings.\n2. Once on the website, locate \"Connect with Straico API\" and click on the copy API Key.\n",
"Ask AI": "Ask AI",
"Image Generation": "Image Generation",
"Upload File": "Upload File",
"Create RAG": "Create RAG",
"List RAGs": "List RAGs",
"Get RAG by ID": "Get RAG by ID",
"Update RAG": "Update RAG",
"Delete RAG": "Delete RAG",
"RAG Prompt Completion": "RAG Prompt Completion",
"Create Agent": "Create Agent",
"Add RAG to Agent": "Add RAG to Agent",
"List Agents": "List Agents",
"Delete Agent": "Delete Agent",
"Update Agent": "Update Agent",
"Get Agent Details": "Get Agent Details",
"Agent Prompt Completion": "Agent Prompt Completion",
"Custom API Call": "Custom API Call",
"Enables users to generate prompt completion based on a specified model.": "Enables users to generate prompt completion based on a specified model.",
"Enables users to generate high-quality images based on textual descriptions.": "Enables users to generate high-quality images based on textual descriptions.",
"Upload a file to Straico API for processing.": "Upload a file to Straico API for processing.",
"Create a new RAG (Retrieval-Augmented Generation) base in the database.": "Create a new RAG (Retrieval-Augmented Generation) base in the database.",
"List all RAG (Retrieval-Augmented Generation) bases for a user.": "List all RAG (Retrieval-Augmented Generation) bases for a user.",
"Retrieve a specific RAG (Retrieval-Augmented Generation) base by its ID.": "Retrieve a specific RAG (Retrieval-Augmented Generation) base by its ID.",
"Update an existing RAG (Retrieval-Augmented Generation) base with additional files.": "Update an existing RAG (Retrieval-Augmented Generation) base with additional files.",
"Delete a specific RAG (Retrieval-Augmented Generation) base by its ID.": "Delete a specific RAG (Retrieval-Augmented Generation) base by its ID.",
"Send a prompt to a specific RAG (Retrieval-Augmented Generation) model.": "Send a prompt to a specific RAG (Retrieval-Augmented Generation) model.",
"Creates a new agent in the database for the user.": "Creates a new agent in the database for the user.",
"Adds a new RAG to an agent in the database for the user.": "Adds a new RAG to an agent in the database for the user.",
"Retrieves the list of agents created by and available to the user.": "Retrieves the list of agents created by and available to the user.",
"Delete a specific agent by its ID": "Delete a specific agent by its ID",
"Update the details of a specific agent": "Update the details of a specific agent",
"Retrieve details of a specific agent": "Retrieve details of a specific agent",
"Prompt an agent with a message and get a response": "Prompt an agent with a message and get a response",
"Make a custom API call to a specific endpoint": "Make a custom API call to a specific endpoint",
"Model": "Model",
"Prompt": "Prompt",
"File URLs": "File URLs",
"YouTube URLs": "YouTube URLs",
"Image URLs": "Image URLs",
"Display Transcripts": "Display Transcripts",
"Temperature": "Temperature",
"Max Tokens": "Max Tokens",
"Number of Images": "Number of Images",
"Image Dimensions": "Image Dimensions",
"Description": "Description",
"File": "File",
"Name": "Name",
"Chunking Method": "Chunking Method",
"Chunk Size": "Chunk Size",
"Chunk Overlap": "Chunk Overlap",
"Separator": "Separator",
"Separators": "Separators",
"Breakpoint Threshold Type": "Breakpoint Threshold Type",
"Buffer Size": "Buffer Size",
"RAG ID": "RAG ID",
"Search Type": "Search Type",
"Number of Documents": "Number of Documents",
"Fetch K": "Fetch K",
"Lambda Mult": "Lambda Mult",
"Score Threshold": "Score Threshold",
"Custom Prompt": "Custom Prompt",
"Default LLM": "Default LLM",
"Tags": "Tags",
"Agent": "Agent",
"Status": "Status",
"Visibility": "Visibility",
"Method": "Method",
"Headers": "Headers",
"Query Parameters": "Query Parameters",
"Body": "Body",
"No Error on Failure": "No Error on Failure",
"Timeout (in seconds)": "Timeout (in seconds)",
"The model which will generate the completion. Some models are suitable for natural language tasks, others specialize in code.": "The model which will generate the completion. Some models are suitable for natural language tasks, others specialize in code.",
"The prompt text for which completions are requested": "The prompt text for which completions are requested",
"URLs of files to be processed by the model (maximum 4 URLs), previously uploaded via the File Upload endpoint": "URLs of files to be processed by the model (maximum 4 URLs), previously uploaded via the File Upload endpoint",
"URLs of YouTube videos to be processed by the model (maximum 4 URLs)": "URLs of YouTube videos to be processed by the model (maximum 4 URLs)",
"URLs of images to be processed by the model, previously uploaded via the File Upload endpoint": "URLs of images to be processed by the model, previously uploaded via the File Upload endpoint",
"If true, returns transcripts of the files. Note: Either File URLs or YouTube URLs are required when this is enabled": "If true, returns transcripts of the files. Note: Either File URLs or YouTube URLs are required when this is enabled",
"This setting influences the variety in the model's responses (0-2)": "This setting influences the variety in the model's responses (0-2)",
"Set the limit for the number of tokens the model can generate in response": "Set the limit for the number of tokens the model can generate in response",
"Number of images to generate.": "Number of images to generate.",
"Select the image generation model.": "Select the image generation model.",
"The desired image dimensions.": "The desired image dimensions.",
"A detailed textual description of the image to be generated.": "A detailed textual description of the image to be generated.",
"The file to upload. Supported file types: pdf, docx, pptx, txt, xlsx, mp3, mp4, html, csv, json, py, php, js, css, cs, swift, kt, xml, ts, png, jpg, jpeg, webp, gif": "The file to upload. Supported file types: pdf, docx, pptx, txt, xlsx, mp3, mp4, html, csv, json, py, php, js, css, cs, swift, kt, xml, ts, png, jpg, jpeg, webp, gif",
"Represents the name of the RAG base": "Represents the name of the RAG base",
"Represents the description of the agent": "Represents the description of the agent",
"Represents the file to be attached. Accepted file extensions are: pdf, docx, csv, txt, xlsx, py": "Represents the file to be attached. Accepted file extensions are: pdf, docx, csv, txt, xlsx, py",
"Represents the chunking method to be used for generating the RAG base. The default value is fixed_size": "Represents the chunking method to be used for generating the RAG base. The default value is fixed_size",
"The size of each chunk (default: 1000)": "The size of each chunk (default: 1000)",
"The overlap between chunks (default: 50)": "The overlap between chunks (default: 50)",
"The separator to use for fixed_size chunking method": "The separator to use for fixed_size chunking method",
"The separators to use for recursive chunking method": "The separators to use for recursive chunking method",
"The breakpoint threshold type for semantic chunking method": "The breakpoint threshold type for semantic chunking method",
"The buffer size for semantic chunking method": "The buffer size for semantic chunking method",
"The ID of the RAG base to retrieve.": "The ID of the RAG base to retrieve.",
"The ID of the RAG base to update.": "The ID of the RAG base to update.",
"Represents the file to be attached. Accepted file extensions are: pdf, docx, csv, txt, xlsx, py.": "Represents the file to be attached. Accepted file extensions are: pdf, docx, csv, txt, xlsx, py.",
"The ID of the RAG base to delete": "The ID of the RAG base to delete",
"The ID of the RAG base to query": "The ID of the RAG base to query",
"A text prompt for the RAG model": "A text prompt for the RAG model",
"The specific LLM to be used": "The specific LLM to be used",
"Type of search to perform": "Type of search to perform",
"Number of documents to return": "Number of documents to return",
"Amount of documents to pass to MMR algorithm": "Amount of documents to pass to MMR algorithm",
"Diversity of results return by MMR (1 for minimum and 0 for maximum)": "Diversity of results return by MMR (1 for minimum and 0 for maximum)",
"Minimum relevance threshold for similarity_score_threshold": "Minimum relevance threshold for similarity_score_threshold",
"A name for the agent": "A name for the agent",
"A brief description of what the model does": "A brief description of what the model does",
"A model that the agent will use for processing prompts": "A model that the agent will use for processing prompts",
"The language model which the agent will use for processing prompts": "The language model which the agent will use for processing prompts",
"An array of tags for the agent. Example: [\"assistant\",\"tag\"]": "An array of tags for the agent. Example: [\"assistant\",\"tag\"]",
"The agent to add the RAG to.": "The agent to add the RAG to.",
"The ID of the RAG to add to the agent": "The ID of the RAG to add to the agent",
"Select the agent to delete": "Select the agent to delete",
"Select the agent to update": "Select the agent to update",
"New name for the agent": "New name for the agent",
"New description for the agent": "New description for the agent",
"New custom prompt for the agent": "New custom prompt for the agent",
"New default LLM for the agent": "New default LLM for the agent",
"New status for the agent": "New status for the agent",
"New visibility setting for the agent": "New visibility setting for the agent",
"Select the agent to get details for.": "Select the agent to get details for.",
"Select the agent to prompt.": "Select the agent to prompt.",
"The text prompt for the agent": "The text prompt for the agent",
"The search type to use for RAG model": "The search type to use for RAG model",
"Diversity of results returned by MMR (0 for minimum, 1 for maximum)": "Diversity of results returned by MMR (0 for minimum, 1 for maximum)",
"Authorization headers are injected automatically from your connection.": "Authorization headers are injected automatically from your connection.",
"openai/dall-e-3": "openai/dall-e-3",
"flux/1.1": "flux/1.1",
"ideogram/V_2A": "ideogram/V_2A",
"ideogram/V_2A_TURBO": "ideogram/V_2A_TURBO",
"ideogram/V_2": "ideogram/V_2",
"ideogram/V_2_TURBO": "ideogram/V_2_TURBO",
"ideogram/V_1": "ideogram/V_1",
"ideogram/V_1_TURBO": "ideogram/V_1_TURBO",
"square": "square",
"landscape": "landscape",
"portrait": "portrait",
"Percentile": "Percentile",
"Interquartile": "Interquartile",
"Standard Deviation": "Standard Deviation",
"Gradient": "Gradient",
"Similarity": "Similarity",
"MMR": "MMR",
"Similarity Score Threshold": "Similarity Score Threshold",
"Active": "Active",
"Inactive": "Inactive",
"Private": "Private",
"Public": "Public",
"GET": "GET",
"POST": "POST",
"PATCH": "PATCH",
"PUT": "PUT",
"DELETE": "DELETE",
"HEAD": "HEAD"
}

View File

@@ -0,0 +1,165 @@
{
"1": "1",
"2": "2",
"3": "3",
"4": "4",
"Straico": "Straico",
"All-in-one generative AI platform": "All-in-one generative AI platform",
"\nFollow these instructions to get your Straico API Key:\n\n1. Visit the following website: https://platform.straico.com/user-settings.\n2. Once on the website, locate \"Connect with Straico API\" and click on the copy API Key.\n": "\nFollow these instructions to get your Straico API Key:\n\n1. Visit the following website: https://platform.straico.com/user-settings.\n2. Once on the website, locate \"Connect with Straico API\" and click on the copy API Key.\n",
"Ask AI": "Ask AI",
"Image Generation": "Image Generation",
"Upload File": "Upload File",
"Create RAG": "Create RAG",
"List RAGs": "List RAGs",
"Get RAG by ID": "Get RAG by ID",
"Update RAG": "Update RAG",
"Delete RAG": "Delete RAG",
"RAG Prompt Completion": "RAG Prompt Completion",
"Create Agent": "Create Agent",
"Add RAG to Agent": "Add RAG to Agent",
"List Agents": "List Agents",
"Delete Agent": "Delete Agent",
"Update Agent": "Update Agent",
"Get Agent Details": "Get Agent Details",
"Agent Prompt Completion": "Agent Prompt Completion",
"Custom API Call": "Custom API Call",
"Enables users to generate prompt completion based on a specified model.": "Enables users to generate prompt completion based on a specified model.",
"Enables users to generate high-quality images based on textual descriptions.": "Enables users to generate high-quality images based on textual descriptions.",
"Upload a file to Straico API for processing.": "Upload a file to Straico API for processing.",
"Create a new RAG (Retrieval-Augmented Generation) base in the database.": "Create a new RAG (Retrieval-Augmented Generation) base in the database.",
"List all RAG (Retrieval-Augmented Generation) bases for a user.": "List all RAG (Retrieval-Augmented Generation) bases for a user.",
"Retrieve a specific RAG (Retrieval-Augmented Generation) base by its ID.": "Retrieve a specific RAG (Retrieval-Augmented Generation) base by its ID.",
"Update an existing RAG (Retrieval-Augmented Generation) base with additional files.": "Update an existing RAG (Retrieval-Augmented Generation) base with additional files.",
"Delete a specific RAG (Retrieval-Augmented Generation) base by its ID.": "Delete a specific RAG (Retrieval-Augmented Generation) base by its ID.",
"Send a prompt to a specific RAG (Retrieval-Augmented Generation) model.": "Send a prompt to a specific RAG (Retrieval-Augmented Generation) model.",
"Creates a new agent in the database for the user.": "Creates a new agent in the database for the user.",
"Adds a new RAG to an agent in the database for the user.": "Adds a new RAG to an agent in the database for the user.",
"Retrieves the list of agents created by and available to the user.": "Retrieves the list of agents created by and available to the user.",
"Delete a specific agent by its ID": "Delete a specific agent by its ID",
"Update the details of a specific agent": "Update the details of a specific agent",
"Retrieve details of a specific agent": "Retrieve details of a specific agent",
"Prompt an agent with a message and get a response": "Prompt an agent with a message and get a response",
"Make a custom API call to a specific endpoint": "Make a custom API call to a specific endpoint",
"Model": "Model",
"Prompt": "Prompt",
"File URLs": "File URLs",
"YouTube URLs": "YouTube URLs",
"Image URLs": "Image URLs",
"Display Transcripts": "Display Transcripts",
"Temperature": "Temperature",
"Max Tokens": "Max Tokens",
"Number of Images": "Number of Images",
"Image Dimensions": "Image Dimensions",
"Description": "Description",
"File": "File",
"Name": "Name",
"Chunking Method": "Chunking Method",
"Chunk Size": "Chunk Size",
"Chunk Overlap": "Chunk Overlap",
"Separator": "Separator",
"Separators": "Separators",
"Breakpoint Threshold Type": "Breakpoint Threshold Type",
"Buffer Size": "Buffer Size",
"RAG ID": "RAG ID",
"Search Type": "Search Type",
"Number of Documents": "Number of Documents",
"Fetch K": "Fetch K",
"Lambda Mult": "Lambda Mult",
"Score Threshold": "Score Threshold",
"Custom Prompt": "Custom Prompt",
"Default LLM": "Default LLM",
"Tags": "Tags",
"Agent": "Agent",
"Status": "Status",
"Visibility": "Visibility",
"Method": "Method",
"Headers": "Headers",
"Query Parameters": "Query Parameters",
"Body": "Body",
"No Error on Failure": "No Error on Failure",
"Timeout (in seconds)": "Timeout (in seconds)",
"The model which will generate the completion. Some models are suitable for natural language tasks, others specialize in code.": "The model which will generate the completion. Some models are suitable for natural language tasks, others specialize in code.",
"The prompt text for which completions are requested": "The prompt text for which completions are requested",
"URLs of files to be processed by the model (maximum 4 URLs), previously uploaded via the File Upload endpoint": "URLs of files to be processed by the model (maximum 4 URLs), previously uploaded via the File Upload endpoint",
"URLs of YouTube videos to be processed by the model (maximum 4 URLs)": "URLs of YouTube videos to be processed by the model (maximum 4 URLs)",
"URLs of images to be processed by the model, previously uploaded via the File Upload endpoint": "URLs of images to be processed by the model, previously uploaded via the File Upload endpoint",
"If true, returns transcripts of the files. Note: Either File URLs or YouTube URLs are required when this is enabled": "If true, returns transcripts of the files. Note: Either File URLs or YouTube URLs are required when this is enabled",
"This setting influences the variety in the model's responses (0-2)": "This setting influences the variety in the model's responses (0-2)",
"Set the limit for the number of tokens the model can generate in response": "Set the limit for the number of tokens the model can generate in response",
"Number of images to generate.": "Number of images to generate.",
"Select the image generation model.": "Select the image generation model.",
"The desired image dimensions.": "The desired image dimensions.",
"A detailed textual description of the image to be generated.": "A detailed textual description of the image to be generated.",
"The file to upload. Supported file types: pdf, docx, pptx, txt, xlsx, mp3, mp4, html, csv, json, py, php, js, css, cs, swift, kt, xml, ts, png, jpg, jpeg, webp, gif": "The file to upload. Supported file types: pdf, docx, pptx, txt, xlsx, mp3, mp4, html, csv, json, py, php, js, css, cs, swift, kt, xml, ts, png, jpg, jpeg, webp, gif",
"Represents the name of the RAG base": "Represents the name of the RAG base",
"Represents the description of the agent": "Represents the description of the agent",
"Represents the file to be attached. Accepted file extensions are: pdf, docx, csv, txt, xlsx, py": "Represents the file to be attached. Accepted file extensions are: pdf, docx, csv, txt, xlsx, py",
"Represents the chunking method to be used for generating the RAG base. The default value is fixed_size": "Represents the chunking method to be used for generating the RAG base. The default value is fixed_size",
"The size of each chunk (default: 1000)": "The size of each chunk (default: 1000)",
"The overlap between chunks (default: 50)": "The overlap between chunks (default: 50)",
"The separator to use for fixed_size chunking method": "The separator to use for fixed_size chunking method",
"The separators to use for recursive chunking method": "The separators to use for recursive chunking method",
"The breakpoint threshold type for semantic chunking method": "The breakpoint threshold type for semantic chunking method",
"The buffer size for semantic chunking method": "The buffer size for semantic chunking method",
"The ID of the RAG base to retrieve.": "The ID of the RAG base to retrieve.",
"The ID of the RAG base to update.": "The ID of the RAG base to update.",
"Represents the file to be attached. Accepted file extensions are: pdf, docx, csv, txt, xlsx, py.": "Represents the file to be attached. Accepted file extensions are: pdf, docx, csv, txt, xlsx, py.",
"The ID of the RAG base to delete": "The ID of the RAG base to delete",
"The ID of the RAG base to query": "The ID of the RAG base to query",
"A text prompt for the RAG model": "A text prompt for the RAG model",
"The specific LLM to be used": "The specific LLM to be used",
"Type of search to perform": "Type of search to perform",
"Number of documents to return": "Number of documents to return",
"Amount of documents to pass to MMR algorithm": "Amount of documents to pass to MMR algorithm",
"Diversity of results return by MMR (1 for minimum and 0 for maximum)": "Diversity of results return by MMR (1 for minimum and 0 for maximum)",
"Minimum relevance threshold for similarity_score_threshold": "Minimum relevance threshold for similarity_score_threshold",
"A name for the agent": "A name for the agent",
"A brief description of what the model does": "A brief description of what the model does",
"A model that the agent will use for processing prompts": "A model that the agent will use for processing prompts",
"The language model which the agent will use for processing prompts": "The language model which the agent will use for processing prompts",
"An array of tags for the agent. Example: [\"assistant\",\"tag\"]": "An array of tags for the agent. Example: [\"assistant\",\"tag\"]",
"The agent to add the RAG to.": "The agent to add the RAG to.",
"The ID of the RAG to add to the agent": "The ID of the RAG to add to the agent",
"Select the agent to delete": "Select the agent to delete",
"Select the agent to update": "Select the agent to update",
"New name for the agent": "New name for the agent",
"New description for the agent": "New description for the agent",
"New custom prompt for the agent": "New custom prompt for the agent",
"New default LLM for the agent": "New default LLM for the agent",
"New status for the agent": "New status for the agent",
"New visibility setting for the agent": "New visibility setting for the agent",
"Select the agent to get details for.": "Select the agent to get details for.",
"Select the agent to prompt.": "Select the agent to prompt.",
"The text prompt for the agent": "The text prompt for the agent",
"The search type to use for RAG model": "The search type to use for RAG model",
"Diversity of results returned by MMR (0 for minimum, 1 for maximum)": "Diversity of results returned by MMR (0 for minimum, 1 for maximum)",
"Authorization headers are injected automatically from your connection.": "Authorization headers are injected automatically from your connection.",
"openai/dall-e-3": "openai/dall-e-3",
"flux/1.1": "flux/1.1",
"ideogram/V_2A": "ideogram/V_2A",
"ideogram/V_2A_TURBO": "ideogram/V_2A_TURBO",
"ideogram/V_2": "ideogram/V_2",
"ideogram/V_2_TURBO": "ideogram/V_2_TURBO",
"ideogram/V_1": "ideogram/V_1",
"ideogram/V_1_TURBO": "ideogram/V_1_TURBO",
"square": "square",
"landscape": "landscape",
"portrait": "portrait",
"Percentile": "Percentile",
"Interquartile": "Interquartile",
"Standard Deviation": "Standard Deviation",
"Gradient": "Gradient",
"Similarity": "Similarity",
"MMR": "MMR",
"Similarity Score Threshold": "Similarity Score Threshold",
"Active": "Aktif",
"Inactive": "Inactive",
"Private": "Private",
"Public": "Public",
"GET": "GET",
"POST": "POST",
"PATCH": "PATCH",
"PUT": "PUT",
"DELETE": "DELETE",
"HEAD": "HEAD"
}

View File

@@ -0,0 +1,158 @@
{
"1": "1",
"2": "2",
"3": "3",
"4": "4",
"All-in-one generative AI platform": "オールインワンの生成AIプラットフォーム",
"\nFollow these instructions to get your Straico API Key:\n\n1. Visit the following website: https://platform.straico.com/user-settings.\n2. Once on the website, locate \"Connect with Straico API\" and click on the copy API Key.\n": "\nFollow these instructions to get your Straico API Key:\n\n1. Visit the following website: https://platform.straico.com/user-settings.\n2. Once on the website, locate \"Connect with Straico API\" and click on the copy API Key.\n",
"Ask AI": "AIに聞く",
"Image Generation": "画像の生成",
"Upload File": "ファイルをアップロード",
"Create RAG": "RAG を作成",
"List RAGs": "リスト RAG",
"Get RAG by ID": "IDでRAGを取得",
"Update RAG": "RAG を更新",
"Delete RAG": "RAG を削除",
"RAG Prompt Completion": "RAG プロンプト完了",
"Create Agent": "エージェントを作成",
"Add RAG to Agent": "エージェントにRAGを追加",
"List Agents": "エージェントの一覧",
"Delete Agent": "エージェントを削除",
"Update Agent": "エージェントの更新",
"Get Agent Details": "エージェントの詳細を取得する",
"Agent Prompt Completion": "エージェントのプロンプト完了",
"Custom API Call": "カスタムAPI通話",
"Enables users to generate prompt completion based on a specified model.": "ユーザーが指定したモデルに基づいてプロンプト補完を生成できるようにします。",
"Enables users to generate high-quality images based on textual descriptions.": "ユーザーがテキストの説明に基づいて高品質な画像を生成できるようにします。",
"Upload a file to Straico API for processing.": "処理のためにStraico APIにファイルをアップロードします。",
"Create a new RAG (Retrieval-Augmented Generation) base in the database.": "データベースに新しい RAG (Retrieval-Augmented Generation) ベースを作成します。",
"List all RAG (Retrieval-Augmented Generation) bases for a user.": "ユーザーのすべての RAG (Retrieval-Augmented Generation) の塩基をリストします。",
"Retrieve a specific RAG (Retrieval-Augmented Generation) base by its ID.": "特定の RAG (Retrieval-Augmented Generation) ベースを ID で取得します。",
"Update an existing RAG (Retrieval-Augmented Generation) base with additional files.": "既存の RAG (Retrieval-Augmented Generation) ベースを追加ファイルで更新します。",
"Delete a specific RAG (Retrieval-Augmented Generation) base by its ID.": "特定の RAG (Retrieval-Augmented Generation) ベースを ID で削除します。",
"Send a prompt to a specific RAG (Retrieval-Augmented Generation) model.": "特定の RAG (Retrieval-Augmented Generation) モデルにプロンプトを送信します。",
"Creates a new agent in the database for the user.": "ユーザーのデータベースに新しいエージェントを作成します。",
"Adds a new RAG to an agent in the database for the user.": "ユーザーのデータベース内のエージェントに新しいRAGを追加します。",
"Retrieves the list of agents created by and available to the user.": "ユーザーが作成したエージェントのリストを取得します。",
"Delete a specific agent by its ID": "ID で特定のエージェントを削除します",
"Update the details of a specific agent": "特定のエージェントの詳細を更新する",
"Retrieve details of a specific agent": "特定のエージェントの詳細を取得します",
"Prompt an agent with a message and get a response": "メッセージを持つエージェントをプロンプトし、応答を取得します",
"Make a custom API call to a specific endpoint": "特定のエンドポイントへのカスタム API コールを実行します。",
"Model": "モデル",
"Prompt": "Prompt",
"File URLs": "ファイルURL",
"YouTube URLs": "YouTube URL",
"Image URLs": "画像のURL",
"Display Transcripts": "トランスクリプトを表示",
"Temperature": "温度",
"Max Tokens": "最大トークン",
"Number of Images": "画像の数",
"Image Dimensions": "画像の寸法",
"Description": "説明",
"File": "ファイル",
"Name": "名前",
"Chunking Method": "チャンク方法",
"Chunk Size": "チャンクサイズ",
"Chunk Overlap": "チャンクの重複",
"Separator": "区切り記号",
"Separators": "区切り記号",
"Breakpoint Threshold Type": "ブレークポイント閾値タイプ",
"Buffer Size": "バッファーサイズ",
"RAG ID": "RAG ID",
"Search Type": "検索タイプ",
"Number of Documents": "ドキュメントの数",
"Fetch K": "K を取得",
"Lambda Mult": "Lambda Mult",
"Score Threshold": "スコアしきい値",
"Custom Prompt": "カスタムプロンプト表示",
"Default LLM": "既定の LLM",
"Tags": "タグ",
"Agent": "エージェント",
"Status": "ステータス",
"Visibility": "公開範囲",
"Method": "方法",
"Headers": "ヘッダー",
"Query Parameters": "クエリパラメータ",
"Body": "本文",
"Response is Binary ?": "応答はバイナリですか?",
"No Error on Failure": "失敗時にエラーはありません",
"Timeout (in seconds)": "タイムアウト(秒)",
"The model which will generate the completion. Some models are suitable for natural language tasks, others specialize in code.": "補完を生成するモデル。自然言語タスクに適しているモデルもあれば、コードに特化したモデルもあります。",
"The prompt text for which completions are requested": "完了が要求されるプロンプトテキスト",
"URLs of files to be processed by the model (maximum 4 URLs), previously uploaded via the File Upload endpoint": "モデルによって処理されるファイルのURL最大4つのURLは、以前にファイルアップロードエンドポイント経由でアップロードされました。",
"URLs of YouTube videos to be processed by the model (maximum 4 URLs)": "モデルで処理されるYouTube動画のURL最大4つのURL",
"URLs of images to be processed by the model, previously uploaded via the File Upload endpoint": "ファイルアップロードエンドポイント経由で以前にアップロードされたモデルによって処理される画像のURL。",
"If true, returns transcripts of the files. Note: Either File URLs or YouTube URLs are required when this is enabled": "true の場合、ファイルのトランスクリプトを返します。注: 有効の場合は、ファイルURLまたはYouTubeのURLのいずれかが必要です。",
"This setting influences the variety in the model's responses (0-2)": "この設定はモデルの応答の多様性に影響を与えます (0-2)",
"Set the limit for the number of tokens the model can generate in response": "応答でモデルが生成できるトークン数の上限を設定します",
"Number of images to generate.": "生成する画像の数。",
"Select the image generation model.": "画像生成モデルを選択します。",
"The desired image dimensions.": "目的の画像サイズ",
"A detailed textual description of the image to be generated.": "生成される画像の詳細なテキスト説明。",
"The file to upload. Supported file types: pdf, docx, pptx, txt, xlsx, mp3, mp4, html, csv, json, py, php, js, css, cs, swift, kt, xml, ts, png, jpg, jpeg, webp, gif": "アップロードするファイル サポートされているファイル形式: pdf, docx, pptx, xlsx, mp3, mp4, html, csv, json、py、php、js、css、cs、swift、kt、xml、ts、png、jpg、webp、gif",
"Represents the name of the RAG base": "RAG ベースの名前を表します",
"Represents the description of the agent": "エージェントの説明を表します",
"Represents the file to be attached. Accepted file extensions are: pdf, docx, csv, txt, xlsx, py": "添付するファイルを表します。受け入れられるファイル拡張子は次のとおりです: pdf, docx, csv, txt, xlsx, py",
"Represents the chunking method to be used for generating the RAG base. The default value is fixed_size": "RAG ベースの生成に使用されるチャンキングメソッドを表します。デフォルト値は fixed_size です。",
"The size of each chunk (default: 1000)": "各チャンクのサイズ (デフォルト: 1000)",
"The overlap between chunks (default: 50)": "チャンク間のオーバーラップデフォルト50",
"The separator to use for fixed_size chunking method": "fixed_size チャンキングメソッドに使用するセパレーター",
"The separators to use for recursive chunking method": "再帰的なチャンキングメソッドに使用するセパレータです",
"The breakpoint threshold type for semantic chunking method": "セマンティックチャンキングメソッドのブレークポイント閾値タイプ",
"The buffer size for semantic chunking method": "セマンティックチャンキングメソッドのバッファサイズ",
"The ID of the RAG base to retrieve.": "取得するRAGベースのID。",
"The ID of the RAG base to update.": "更新するRAGベースのID。",
"Represents the file to be attached. Accepted file extensions are: pdf, docx, csv, txt, xlsx, py.": "添付するファイルを表します。受け入れられるファイル拡張子は以下の通りです: pdf, docx, csv, txt, xlsx, py",
"The ID of the RAG base to delete": "削除する RAG ベースの ID",
"The ID of the RAG base to query": "問い合わせるRAG ベースの ID",
"A text prompt for the RAG model": "RAG モデルのテキスト・プロンプト表示",
"The specific LLM to be used": "使用される特定の LLM",
"Type of search to perform": "実行する検索タイプ",
"Number of documents to return": "返却するドキュメントの数",
"Amount of documents to pass to MMR algorithm": "MMRアルゴリズムに渡すドキュメントの量",
"Diversity of results return by MMR (1 for minimum and 0 for maximum)": "結果の多様性はMMR(最小値は1、最大値は0)",
"Minimum relevance threshold for similarity_score_threshold": "similarity_score_threshold の最小妥当性閾値",
"A name for the agent": "エージェントの名前",
"A brief description of what the model does": "モデルの動作の簡単な説明",
"A model that the agent will use for processing prompts": "エージェントがプロンプトの処理に使用するモデル",
"The language model which the agent will use for processing prompts": "エージェントがプロンプトの処理に使用する言語モデル",
"An array of tags for the agent. Example: [\"assistant\",\"tag\"]": "エージェントのタグの配列。例: [\"assistant\",\"tag\"]",
"The agent to add the RAG to.": "RAG を追加するエージェント",
"The ID of the RAG to add to the agent": "エージェントに追加するRAGのID",
"Select the agent to delete": "削除するエージェントを選択します",
"Select the agent to update": "更新するエージェントを選択します",
"New name for the agent": "エージェントの新しい名前",
"New description for the agent": "エージェントの新しい説明",
"New custom prompt for the agent": "エージェントの新しいカスタムプロンプトが表示されます",
"New default LLM for the agent": "エージェントの新しいデフォルト LLM",
"New status for the agent": "エージェントの新しいステータス",
"New visibility setting for the agent": "エージェントの新しい表示設定",
"Select the agent to get details for.": "詳細を取得するエージェントを選択します。",
"Select the agent to prompt.": "プロンプトするエージェントを選択します。",
"The text prompt for the agent": "エージェントのテキスト・プロンプト:",
"The search type to use for RAG model": "RAG モデルに使用する検索タイプ",
"Diversity of results returned by MMR (0 for minimum, 1 for maximum)": "MMRによって返される結果の多様性(最小0、最大1)",
"Authorization headers are injected automatically from your connection.": "認証ヘッダは接続から自動的に注入されます。",
"Enable for files like PDFs, images, etc..": "PDF、画像などのファイルを有効にします。",
"square": "正方形の",
"landscape": "横向き",
"portrait": "縦向き(縦)",
"Percentile": "割合",
"Interquartile": "Interquartile",
"Standard Deviation": "標準偏位",
"Gradient": "Gradient",
"Similarity": "<unk>",
"MMR": "MMR",
"Similarity Score Threshold": "類似点スコアしきい値",
"Active": "有効",
"Inactive": "非アクティブ",
"Private": "非公開",
"Public": "公開",
"GET": "取得",
"POST": "POST",
"PATCH": "PATCH",
"PUT": "PUT",
"DELETE": "削除",
"HEAD": "頭"
}

View File

@@ -0,0 +1,158 @@
{
"1": "1",
"2": "2",
"3": "3",
"4": "4",
"All-in-one generative AI platform": "Alles-in-één generatief AI-platform",
"\nFollow these instructions to get your Straico API Key:\n\n1. Visit the following website: https://platform.straico.com/user-settings.\n2. Once on the website, locate \"Connect with Straico API\" and click on the copy API Key.\n": "\nVolg deze instructies om je Straico API Key te verkrijgen:\n\n1. Bezoek de volgende website: https://platform.straico. om/user-settings.\n2. Eenmaal op de website, lokaliseer \"Verbinden met Straico API\" en klik op de kopie API Key.\n",
"Ask AI": "Vraag het AI",
"Image Generation": "Afbeelding genereren",
"Upload File": "Bestand uploaden",
"Create RAG": "Creëer RAG",
"List RAGs": "RAG's weergeven",
"Get RAG by ID": "Krijg RAG via ID",
"Update RAG": "RAG bijwerken",
"Delete RAG": "Verwijder RAG",
"RAG Prompt Completion": "RAG Veelgestelde afronding",
"Create Agent": "Maak agent",
"Add RAG to Agent": "RAG toevoegen aan agent",
"List Agents": "Agenten weergeven",
"Delete Agent": "Verwijder agent",
"Update Agent": "Agent bijwerken",
"Get Agent Details": "Krijg Medewerkerdetails",
"Agent Prompt Completion": "Agent Veelgestelde Voltooiing",
"Custom API Call": "Custom API Call",
"Enables users to generate prompt completion based on a specified model.": "Maakt het mogelijk voor gebruikers om een snelle voltooiing te genereren op basis van een opgegeven model.",
"Enables users to generate high-quality images based on textual descriptions.": "Maakt het voor gebruikers mogelijk om afbeeldingen van hoge kwaliteit te genereren op basis van tekstuele beschrijvingen.",
"Upload a file to Straico API for processing.": "Upload een bestand naar Straico API voor verwerking.",
"Create a new RAG (Retrieval-Augmented Generation) base in the database.": "Maak een nieuwe RAG (Retrieval-Augmented Generation) in de database",
"List all RAG (Retrieval-Augmented Generation) bases for a user.": "Toon alle RAG (Retrieval-Augmented Generation) bases voor een gebruiker.",
"Retrieve a specific RAG (Retrieval-Augmented Generation) base by its ID.": "Haal een specifieke RAG (Retrieval-Augmented Generation) op met zijn ID.",
"Update an existing RAG (Retrieval-Augmented Generation) base with additional files.": "Update een bestaande RAG (Retrieval-Augmented Generation) database met extra bestanden.",
"Delete a specific RAG (Retrieval-Augmented Generation) base by its ID.": "Verwijder een specifieke RAG (Retrieval-Augmented Generation) met de ID.",
"Send a prompt to a specific RAG (Retrieval-Augmented Generation) model.": "Stuur een vraag naar een specifiek RAG (Retrieval-Augmented Generation) model.",
"Creates a new agent in the database for the user.": "Maakt een nieuwe agent aan in de database voor de gebruiker.",
"Adds a new RAG to an agent in the database for the user.": "Voegt een nieuwe RAG toe aan een medewerker in de database voor de gebruiker.",
"Retrieves the list of agents created by and available to the user.": "Ophalen van de lijst met agenten gemaakt door en beschikbaar voor de gebruiker.",
"Delete a specific agent by its ID": "Verwijder een specifieke agent via zijn ID",
"Update the details of a specific agent": "Werk de details van een specifieke medewerker bij",
"Retrieve details of a specific agent": "Haal details op van een specifieke medewerker",
"Prompt an agent with a message and get a response": "Vraag een agent aan met een bericht en krijg een antwoord",
"Make a custom API call to a specific endpoint": "Maak een aangepaste API call naar een specifiek eindpunt",
"Model": "Model",
"Prompt": "Prompt",
"File URLs": "Bestand URL 's",
"YouTube URLs": "YouTube URL's",
"Image URLs": "Afbeelding URLs",
"Display Transcripts": "Transcripts weergeven",
"Temperature": "Temperatuur",
"Max Tokens": "Max Tokens",
"Number of Images": "Aantal afbeeldingen",
"Image Dimensions": "Afbeelding dimensie",
"Description": "Beschrijving",
"File": "Bestand",
"Name": "Naam",
"Chunking Method": "Chunking Methode",
"Chunk Size": "Chunk Grootte",
"Chunk Overlap": "Chunk Overzicht",
"Separator": "Scheidingsteken",
"Separators": "Scheidingstekens",
"Breakpoint Threshold Type": "Breekpunt drempel type",
"Buffer Size": "Buffer Grootte",
"RAG ID": "RAG ID",
"Search Type": "Type zoeken",
"Number of Documents": "Aantal documenten",
"Fetch K": "Ophalen K",
"Lambda Mult": "Lambda Mult",
"Score Threshold": "Score drempel",
"Custom Prompt": "Aangepaste vraag",
"Default LLM": "Standaard LLM",
"Tags": "Labels",
"Agent": "Agent",
"Status": "status",
"Visibility": "Zichtbaarheid",
"Method": "Methode",
"Headers": "Kopteksten",
"Query Parameters": "Query parameters",
"Body": "Lichaam",
"Response is Binary ?": "Antwoord is binair?",
"No Error on Failure": "Geen fout bij fout",
"Timeout (in seconds)": "Time-out (in seconden)",
"The model which will generate the completion. Some models are suitable for natural language tasks, others specialize in code.": "Het model dat de voltooiing zal genereren. Sommige modellen zijn geschikt voor natuurlijke taaltaken, andere zijn gespecialiseerd in code.",
"The prompt text for which completions are requested": "De prompte tekst waarvoor aanvullingen worden aangevraagd",
"URLs of files to be processed by the model (maximum 4 URLs), previously uploaded via the File Upload endpoint": "URL's van bestanden die worden verwerkt door het model (maximaal 4 URL's), eerder geüpload via het eindpunt van de bestandsupload",
"URLs of YouTube videos to be processed by the model (maximum 4 URLs)": "URL's van YouTube-video's die worden verwerkt door het model (maximum 4 URL's)",
"URLs of images to be processed by the model, previously uploaded via the File Upload endpoint": "URL's van afbeeldingen die worden verwerkt door het model, eerder geüpload via het eindpunt van de bestandsupload",
"If true, returns transcripts of the files. Note: Either File URLs or YouTube URLs are required when this is enabled": "Indien waar, retourneert transcripten van de bestanden. Opmerking: Bestand-URL's of YouTube-URL's zijn vereist wanneer dit ingeschakeld is",
"This setting influences the variety in the model's responses (0-2)": "Deze instelling beïnvloedt de variëteit in de antwoorden van het model (0-2)",
"Set the limit for the number of tokens the model can generate in response": "Stel de limiet in voor het aantal tokens dat het model kan genereren in reactie",
"Number of images to generate.": "Aantal afbeeldingen om te genereren.",
"Select the image generation model.": "Selecteer het model voor het genereren van afbeeldingen.",
"The desired image dimensions.": "De gewenste afmetingen van de afbeeldingen.",
"A detailed textual description of the image to be generated.": "Een gedetailleerde tekstuele beschrijving van de te genereren afbeelding",
"The file to upload. Supported file types: pdf, docx, pptx, txt, xlsx, mp3, mp4, html, csv, json, py, php, js, css, cs, swift, kt, xml, ts, png, jpg, jpeg, webp, gif": "Het te uploaden bestand. Ondersteunde bestandstypen: pdf, docx, pptx, txt, xlsx, mp3, mp4, html, csv, json, py, php, js, cs, cs, swift, ft, kt, xml, ts, png, jpg, jpeg, webp, gif",
"Represents the name of the RAG base": "Vertegenwoordigt de naam van de RAG basis",
"Represents the description of the agent": "Vertegenwoordigt de beschrijving van de agent",
"Represents the file to be attached. Accepted file extensions are: pdf, docx, csv, txt, xlsx, py": "Vertegenwoordigt het bestand dat toegevoegd moet worden. Geaccepteerde bestandsextensies zijn: pdf, docx, csv, txt, xlsx, py",
"Represents the chunking method to be used for generating the RAG base. The default value is fixed_size": "Vertegenwoordigt de chunking methode die gebruikt moet worden voor het genereren van de RAG basis. De standaardwaarde is fixed_size",
"The size of each chunk (default: 1000)": "De grootte van elk chunk (standaard: 1000)",
"The overlap between chunks (default: 50)": "De overlap tussen brokken (standaard: 50)",
"The separator to use for fixed_size chunking method": "Het scheidingsteken voor fixed_size chunking methode",
"The separators to use for recursive chunking method": "De scheidingstekens te gebruiken voor recursieve chunkmethode",
"The breakpoint threshold type for semantic chunking method": "Het breekpunt drempeltype voor semantische hakmethode",
"The buffer size for semantic chunking method": "De buffergrootte voor semantische deelmethode",
"The ID of the RAG base to retrieve.": "Het ID van de RAG basis om op te halen.",
"The ID of the RAG base to update.": "Het ID van de te updaten RAG basis",
"Represents the file to be attached. Accepted file extensions are: pdf, docx, csv, txt, xlsx, py.": "Vertegenwoordigt het bestand dat toegevoegd moet worden. Geaccepteerde bestandsextensies zijn: pdf, docx, csv, txt, xlsx, py.",
"The ID of the RAG base to delete": "Het ID van de RAG basis om te verwijderen",
"The ID of the RAG base to query": "Het ID van de RAG basis om te zoeken",
"A text prompt for the RAG model": "Een tekst vraagt om het RAG-model",
"The specific LLM to be used": "De specifieke LLM die gebruikt moet worden",
"Type of search to perform": "Type zoekopdracht om uit te voeren",
"Number of documents to return": "Aantal documenten om te retourneren",
"Amount of documents to pass to MMR algorithm": "Aantal documenten om door te geven aan MMR algoritme",
"Diversity of results return by MMR (1 for minimum and 0 for maximum)": "Diversiteit van resultaten terugkeer door MMR (1 voor minimum en 0 voor maximaal)",
"Minimum relevance threshold for similarity_score_threshold": "Minimale relevantie drempel voor vergelijkings_score_drempelwaarde",
"A name for the agent": "Een naam voor de agent",
"A brief description of what the model does": "Een korte beschrijving van wat het model doet",
"A model that the agent will use for processing prompts": "Een model dat de agent zal gebruiken voor het verwerken van aanwijzingen",
"The language model which the agent will use for processing prompts": "Het taalmodel dat de agent zal gebruiken voor het verwerken van aanwijzingen",
"An array of tags for the agent. Example: [\"assistant\",\"tag\"]": "Een reeks van tags voor de agent. Voorbeeld: [\"assistent\",\"tag\"]",
"The agent to add the RAG to.": "De agent om de RAG aan toe te voegen.",
"The ID of the RAG to add to the agent": "Het ID van de RAG om toe te voegen aan de agent",
"Select the agent to delete": "Selecteer de agent om te verwijderen",
"Select the agent to update": "Selecteer de agent om te updaten",
"New name for the agent": "Nieuwe naam voor de agent",
"New description for the agent": "Nieuwe beschrijving van de agent",
"New custom prompt for the agent": "Nieuwe aangepaste prompt voor de agent",
"New default LLM for the agent": "Nieuwe standaard LLM voor de agent",
"New status for the agent": "Nieuwe status voor de agent",
"New visibility setting for the agent": "Nieuwe zichtbaarheidsinstelling voor de agent",
"Select the agent to get details for.": "Selecteer de agent om details op te halen.",
"Select the agent to prompt.": "Selecteer de agent voor aanwijzing.",
"The text prompt for the agent": "De tekst vraagt om de agent",
"The search type to use for RAG model": "Het te gebruiken zoektype voor RAG model",
"Diversity of results returned by MMR (0 for minimum, 1 for maximum)": "Diversiteit van de resultaten geretourneerd door MMR (0 voor minimum 1, maximaal 1",
"Authorization headers are injected automatically from your connection.": "Autorisatie headers worden automatisch geïnjecteerd vanuit uw verbinding.",
"Enable for files like PDFs, images, etc..": "Inschakelen voor bestanden zoals PDF's, afbeeldingen etc..",
"square": "Vierkant",
"landscape": "liggend",
"portrait": "portret",
"Percentile": "Percentiel",
"Interquartile": "Interquartile",
"Standard Deviation": "Standaard afwijking",
"Gradient": "Kleurovergang",
"Similarity": "Vergelijkbaarheid",
"MMR": "MMR",
"Similarity Score Threshold": "Tolerantie Score",
"Active": "Actief",
"Inactive": "Inactief",
"Private": "Privé",
"Public": "Openbaar",
"GET": "KRIJG",
"POST": "POSTE",
"PATCH": "BEKIJK",
"PUT": "PUT",
"DELETE": "VERWIJDEREN",
"HEAD": "HOOFD"
}

View File

@@ -0,0 +1,158 @@
{
"1": "1",
"2": "2",
"3": "3",
"4": "4",
"All-in-one generative AI platform": "Plataforma gerativa de IA completa",
"\nFollow these instructions to get your Straico API Key:\n\n1. Visit the following website: https://platform.straico.com/user-settings.\n2. Once on the website, locate \"Connect with Straico API\" and click on the copy API Key.\n": "\nSiga estas instruções para obter sua chave de API do Straico:\n\n1. Visite o seguinte site: https://platform.straico. A/configurações de usuário.\n2. Uma vez no site, localize \"Conectar-se com o Straico API\" e clique na chave de API de cópia.\n",
"Ask AI": "Perguntar à IA",
"Image Generation": "Geração de imagem",
"Upload File": "Enviar Arquivo",
"Create RAG": "Criar RAG",
"List RAGs": "Listar RAGs",
"Get RAG by ID": "Obter RAG por ID",
"Update RAG": "Atualizar RAG",
"Delete RAG": "Apagar RAG",
"RAG Prompt Completion": "RAG - Conclusão",
"Create Agent": "Criar Agente",
"Add RAG to Agent": "Adicionar RAG ao Agente",
"List Agents": "Listar Agentes",
"Delete Agent": "Excluir Agente",
"Update Agent": "Atualizar Agente",
"Get Agent Details": "Obter Detalhes do Agente",
"Agent Prompt Completion": "Prompt Final do Agente",
"Custom API Call": "Chamada de API personalizada",
"Enables users to generate prompt completion based on a specified model.": "Permite aos usuários gerar conclusão prompt com base em um modelo especificado.",
"Enables users to generate high-quality images based on textual descriptions.": "Permite aos usuários gerar imagens de alta qualidade com base nas descrições textuais.",
"Upload a file to Straico API for processing.": "Enviar um arquivo para a API Straico para processamento.",
"Create a new RAG (Retrieval-Augmented Generation) base in the database.": "Criar uma nova base de RAG (Geração Retrieval-Aumentada) no banco de dados.",
"List all RAG (Retrieval-Augmented Generation) bases for a user.": "Listar todas as bases de RAG (Geração Retrieval-Aumentada) de um usuário.",
"Retrieve a specific RAG (Retrieval-Augmented Generation) base by its ID.": "Recuperar uma base específica de RAG (geração recuperada) por sua identificação.",
"Update an existing RAG (Retrieval-Augmented Generation) base with additional files.": "Atualizar uma base de RAG existente (Geração Retrieval-Aumentado) com arquivos adicionais.",
"Delete a specific RAG (Retrieval-Augmented Generation) base by its ID.": "Excluir uma base de RAG (Geração Retrieval-Aumentada) por seu ID.",
"Send a prompt to a specific RAG (Retrieval-Augmented Generation) model.": "Enviar um prompt para um modelo de RAG específico (Recuperação-Geração)",
"Creates a new agent in the database for the user.": "Cria um novo agente no banco de dados para o usuário.",
"Adds a new RAG to an agent in the database for the user.": "Adiciona um novo RAG a um agente do banco de dados para o usuário.",
"Retrieves the list of agents created by and available to the user.": "Recupera a lista de agentes criados e disponíveis para o usuário.",
"Delete a specific agent by its ID": "Deletar um agente específico por seu ID",
"Update the details of a specific agent": "Atualize os detalhes de um agente específico",
"Retrieve details of a specific agent": "Recuperar detalhes de um agente específico",
"Prompt an agent with a message and get a response": "Avisar um agente com uma mensagem e obter uma resposta",
"Make a custom API call to a specific endpoint": "Faça uma chamada de API personalizada para um ponto de extremidade específico",
"Model": "Modelo",
"Prompt": "Aviso",
"File URLs": "URLs do arquivo",
"YouTube URLs": "URLs do YouTube",
"Image URLs": "URLs da imagem",
"Display Transcripts": "Exibir Transcrições",
"Temperature": "Temperatura",
"Max Tokens": "Max Tokens",
"Number of Images": "Número de imagens",
"Image Dimensions": "Dimensões da imagem",
"Description": "Descrição",
"File": "Arquivo",
"Name": "Nome",
"Chunking Method": "Método de Chunking",
"Chunk Size": "Tamanho do Chunk",
"Chunk Overlap": "Sobreposição de Pedaço",
"Separator": "Separador",
"Separators": "Separadores",
"Breakpoint Threshold Type": "Limite de Breakpoint",
"Buffer Size": "Tamanho do buffer",
"RAG ID": "RAG ID",
"Search Type": "Pesquisar Tipo",
"Number of Documents": "Número de documentos",
"Fetch K": "Buscar K",
"Lambda Mult": "Lambda Mult",
"Score Threshold": "Limite de Pontuação",
"Custom Prompt": "Solicitação personalizada",
"Default LLM": "LLM padrão",
"Tags": "Etiquetas",
"Agent": "Representante",
"Status": "Estado",
"Visibility": "Visibilidade",
"Method": "Método",
"Headers": "Cabeçalhos",
"Query Parameters": "Parâmetros da consulta",
"Body": "Conteúdo",
"Response is Binary ?": "A resposta é binária ?",
"No Error on Failure": "Nenhum erro no Failure",
"Timeout (in seconds)": "Tempo limite (em segundos)",
"The model which will generate the completion. Some models are suitable for natural language tasks, others specialize in code.": "O modelo que irá gerar a conclusão. Alguns modelos são adequados para tarefas de linguagem natural, outros são especializados no código.",
"The prompt text for which completions are requested": "O texto do prompt para quais complementos são requisitados",
"URLs of files to be processed by the model (maximum 4 URLs), previously uploaded via the File Upload endpoint": "URLs de arquivos a serem processados pelo modelo (máximo 4 URLs), previamente carregado através do ponto de carregamento de arquivo",
"URLs of YouTube videos to be processed by the model (maximum 4 URLs)": "URLs dos vídeos do YouTube a serem processados pelo modelo (máximo de 4 URLs)",
"URLs of images to be processed by the model, previously uploaded via the File Upload endpoint": "URLs das imagens a serem processadas pelo modelo, previamente carregado através da extremidade do Upload do Arquivo",
"If true, returns transcripts of the files. Note: Either File URLs or YouTube URLs are required when this is enabled": "Se verdadeiro, retorna transcrições dos arquivos. Nota: URLs de arquivos ou URLs do YouTube são necessárias quando isso está ativado",
"This setting influences the variety in the model's responses (0-2)": "Esta configuração influencia a variedade nas respostas do modelo (0-2)",
"Set the limit for the number of tokens the model can generate in response": "Definir o limite para o número de tokens que o modelo pode gerar em resposta",
"Number of images to generate.": "Número de imagens a gerar.",
"Select the image generation model.": "Selecionar modelo de geração de imagem.",
"The desired image dimensions.": "As dimensões da imagem desejadas.",
"A detailed textual description of the image to be generated.": "Uma descrição textual detalhada da imagem a ser gerada.",
"The file to upload. Supported file types: pdf, docx, pptx, txt, xlsx, mp3, mp4, html, csv, json, py, php, js, css, cs, swift, kt, xml, ts, png, jpg, jpeg, webp, gif": "O arquivo a ser enviado. Tipos de arquivo suportados: pdf, docx, pptx, txt, xlsx, mp3, mp4, html, csv, json, py, php, js, css, cs, rápido, kt, xml, ts, png, jpg, jpeg, webp, gif",
"Represents the name of the RAG base": "Representa o nome da base RAG",
"Represents the description of the agent": "Representa a descrição do agente",
"Represents the file to be attached. Accepted file extensions are: pdf, docx, csv, txt, xlsx, py": "Representa o arquivo a ser anexado. As extensões de arquivo aceitas são: pdf, docx, csv, txt, xlsx, py",
"Represents the chunking method to be used for generating the RAG base. The default value is fixed_size": "Representa o método de chunking a ser usado para gerar a base RAG. O valor padrão é fixed_size",
"The size of each chunk (default: 1000)": "O tamanho de cada chunk (padrão: 1000)",
"The overlap between chunks (default: 50)": "A sobreposição entre chunks (padrão: 50)",
"The separator to use for fixed_size chunking method": "O separador a usar para o método de chunking fixed_size",
"The separators to use for recursive chunking method": "Os separadores a serem usados para método de chunking recursivo",
"The breakpoint threshold type for semantic chunking method": "O tipo de ponto de interrupção para o método semântico de chunking",
"The buffer size for semantic chunking method": "O tamanho de buffer para o método semântico de chunking",
"The ID of the RAG base to retrieve.": "O ID da base de RAG a recuperar.",
"The ID of the RAG base to update.": "A ID da base RAG para atualizar.",
"Represents the file to be attached. Accepted file extensions are: pdf, docx, csv, txt, xlsx, py.": "Representa o arquivo a ser anexado. As extensões de arquivo aceitas são: pdf, docx, csv, txt, xlsx, py.",
"The ID of the RAG base to delete": "A ID da base RAG para excluir",
"The ID of the RAG base to query": "A ID da base RAG para consulta",
"A text prompt for the RAG model": "Um prompt de texto para o modelo RAG",
"The specific LLM to be used": "A LLM específica a ser usada",
"Type of search to perform": "Tipo de pesquisa a ser executada",
"Number of documents to return": "Número de documentos a retornar",
"Amount of documents to pass to MMR algorithm": "Quantidade de documentos para passar ao algoritmo MMR",
"Diversity of results return by MMR (1 for minimum and 0 for maximum)": "Diversidade de resultados de retorno por MMR (1 para o mínimo e 0 para o máximo)",
"Minimum relevance threshold for similarity_score_threshold": "Limite mínimo de relevância para similarity_score_threshold",
"A name for the agent": "Um nome para o agente",
"A brief description of what the model does": "Uma breve descrição do que o modelo faz",
"A model that the agent will use for processing prompts": "Um modelo que o agente usará para processar prompts",
"The language model which the agent will use for processing prompts": "O modelo de linguagem que o agente usará para processar os prompts",
"An array of tags for the agent. Example: [\"assistant\",\"tag\"]": "Um array de tags para o agente. Exemplo: [\"assistente\",\"tag\"]",
"The agent to add the RAG to.": "O agente para adicionar o RAG a.",
"The ID of the RAG to add to the agent": "O ID da RAG para adicionar ao agente",
"Select the agent to delete": "Selecione o agente para excluir",
"Select the agent to update": "Selecione o agente para atualização",
"New name for the agent": "Novo nome para o agente",
"New description for the agent": "Nova descrição para o agente",
"New custom prompt for the agent": "Nova solicitação personalizada para o agente",
"New default LLM for the agent": "Novo LLM padrão para o agente",
"New status for the agent": "Novo status para o agente",
"New visibility setting for the agent": "Nova configuração de visibilidade para o agente",
"Select the agent to get details for.": "Selecione o agente para obter detalhes.",
"Select the agent to prompt.": "Selecione o agente para solicitar.",
"The text prompt for the agent": "A solicitação de texto para o agente",
"The search type to use for RAG model": "O tipo de pesquisa a ser usado pelo modelo RAG",
"Diversity of results returned by MMR (0 for minimum, 1 for maximum)": "Diversidade dos resultados retornados por MMR (0 para o mínimo, 1 para o máximo)",
"Authorization headers are injected automatically from your connection.": "Os cabeçalhos de autorização são inseridos automaticamente a partir da sua conexão.",
"Enable for files like PDFs, images, etc..": "Habilitar para arquivos como PDFs, imagens, etc..",
"square": "quadrado",
"landscape": "paisagem",
"portrait": "retrato",
"Percentile": "Percentil",
"Interquartile": "Interquartile",
"Standard Deviation": "Desvio Padrão",
"Gradient": "Degradê",
"Similarity": "Similaridade",
"MMR": "MMR",
"Similarity Score Threshold": "Limite de Pontuação Similaridade",
"Active": "Ativo",
"Inactive": "Inativo",
"Private": "Privado",
"Public": "Público",
"GET": "OBTER",
"POST": "POSTAR",
"PATCH": "COMPRAR",
"PUT": "COLOCAR",
"DELETE": "EXCLUIR",
"HEAD": "CABEÇA"
}

View File

@@ -0,0 +1,165 @@
{
"1": "1",
"2": "2",
"3": "3",
"4": "4",
"Straico": "Straico",
"All-in-one generative AI platform": "Всё в одном генеративном ИИ платформе",
"\nFollow these instructions to get your Straico API Key:\n\n1. Visit the following website: https://platform.straico.com/user-settings.\n2. Once on the website, locate \"Connect with Straico API\" and click on the copy API Key.\n": "\nСледуйте этим инструкциям, чтобы получить ваш Straico API ключ:\n\n1. Посетите следующий веб-сайт: https://platform.straico. ом/пользовательские настройки.\n2. Однажды на сайте найдите «Подключиться к Straico API» и нажмите на кнопку копирования API.\n",
"Ask AI": "Ask AI",
"Image Generation": "Генерация изображений",
"Upload File": "Загрузить файл",
"Create RAG": "Создать RAG",
"List RAGs": "Список RAG",
"Get RAG by ID": "Получить RAG по ID",
"Update RAG": "Обновить RAG",
"Delete RAG": "Удалить RAG",
"RAG Prompt Completion": "Запрос RAG завершен",
"Create Agent": "Создать Агента",
"Add RAG to Agent": "Добавить RAG к Агенту",
"List Agents": "Список агентов",
"Delete Agent": "Удалить Агента",
"Update Agent": "Обновить Агента",
"Get Agent Details": "Получить детали агента",
"Agent Prompt Completion": "Заявка агента завершена",
"Custom API Call": "Пользовательский вызов API",
"Enables users to generate prompt completion based on a specified model.": "Позволяет пользователям генерировать подсказки на основе указанной модели.",
"Enables users to generate high-quality images based on textual descriptions.": "Позволяет пользователям создавать высококачественные изображения на основе текстовых описаний.",
"Upload a file to Straico API for processing.": "Загрузите файл в Straico API для обработки.",
"Create a new RAG (Retrieval-Augmented Generation) base in the database.": "Создать новую базу RAG (Retrieval-Augmented Generation) в базе данных.",
"List all RAG (Retrieval-Augmented Generation) bases for a user.": "Список всех баз RAG (Retrieval-Augmented Generation) для пользователя.",
"Retrieve a specific RAG (Retrieval-Augmented Generation) base by its ID.": "Получить определенную базу RAG (Retrieval-Augmented Generation) по его ID.",
"Update an existing RAG (Retrieval-Augmented Generation) base with additional files.": "Обновить существующую базу RAG (Retrieval-Augmented Generation) с дополнительными файлами.",
"Delete a specific RAG (Retrieval-Augmented Generation) base by its ID.": "Удалите специфическую базу RAG (Retrieval-Augmented Generation) по ее ID.",
"Send a prompt to a specific RAG (Retrieval-Augmented Generation) model.": "Отправить запрос на конкретную модель RAG (Retrieval-Augmented Generation) .",
"Creates a new agent in the database for the user.": "Создает нового агента в базе данных для пользователя.",
"Adds a new RAG to an agent in the database for the user.": "Добавляет новый RAG в базу данных для пользователя.",
"Retrieves the list of agents created by and available to the user.": "Возвращает список агентов, созданных пользователем и доступных им.",
"Delete a specific agent by its ID": "Удалить конкретного агента по его ID",
"Update the details of a specific agent": "Обновить детали конкретного агента",
"Retrieve details of a specific agent": "Получить информацию о конкретном агенте",
"Prompt an agent with a message and get a response": "Запросить агента с сообщением и получить ответ",
"Make a custom API call to a specific endpoint": "Сделать пользовательский API вызов к определенной конечной точке",
"Model": "Модель",
"Prompt": "Prompt",
"File URLs": "URL файла",
"YouTube URLs": "URL-адреса YouTube",
"Image URLs": "URL-адреса изображений",
"Display Transcripts": "Отображать субтитры",
"Temperature": "Температура",
"Max Tokens": "Макс. токенов",
"Number of Images": "Количество изображений",
"Image Dimensions": "Размеры изображения",
"Description": "Описание",
"File": "Файл",
"Name": "Наименование",
"Chunking Method": "Метод чанковки",
"Chunk Size": "Размер чанка",
"Chunk Overlap": "Наложение чанка",
"Separator": "Разделитель",
"Separators": "Разделители",
"Breakpoint Threshold Type": "Порог точки останова",
"Buffer Size": "Размер буфера",
"RAG ID": "RAG ID",
"Search Type": "Тип поиска",
"Number of Documents": "Количество документов",
"Fetch K": "Выборка K",
"Lambda Mult": "Lambda Mult",
"Score Threshold": "Порог баллов",
"Custom Prompt": "Пользовательская подсказка",
"Default LLM": "ООО по умолчанию",
"Tags": "Теги",
"Agent": "Агент",
"Status": "Статус",
"Visibility": "Видимость",
"Method": "Метод",
"Headers": "Заголовки",
"Query Parameters": "Параметры запроса",
"Body": "Тело",
"No Error on Failure": "Нет ошибок при ошибке",
"Timeout (in seconds)": "Таймаут (в секундах)",
"The model which will generate the completion. Some models are suitable for natural language tasks, others specialize in code.": "Модель, которая будет генерировать дополнение, некоторые модели подходят для естественных языковых задач, другие специализируются на программировании.",
"The prompt text for which completions are requested": "Текст подсказки, для которой запрашиваются дополнения",
"URLs of files to be processed by the model (maximum 4 URLs), previously uploaded via the File Upload endpoint": "URL-адреса файлов, которые будут обработаны по модели (не более 4 URL), предварительно загруженные через конечную точку загрузки файла",
"URLs of YouTube videos to be processed by the model (maximum 4 URLs)": "URL-адреса видео YouTube для обработки по модели (максимум 4 URL)",
"URLs of images to be processed by the model, previously uploaded via the File Upload endpoint": "URL-адреса изображений, которые будут обработаны моделью, ранее загруженные через конечную точку загрузки файла",
"If true, returns transcripts of the files. Note: Either File URLs or YouTube URLs are required when this is enabled": "Если введено значение true, возвращает субтитры файлов. Примечание: при включении требуется URL-адреса файлов или YouTube",
"This setting influences the variety in the model's responses (0-2)": "Этот параметр влияет на разнообразие в ответах модели (0-2)",
"Set the limit for the number of tokens the model can generate in response": "Установите лимит количества токенов, которое модель может генерировать в ответ",
"Number of images to generate.": "Количество изображений для генерации изображений.",
"Select the image generation model.": "Выберите модель генерации изображения.",
"The desired image dimensions.": "Размеры желаемого изображения.",
"A detailed textual description of the image to be generated.": "Подробное текстовое описание создаваемого изображения.",
"The file to upload. Supported file types: pdf, docx, pptx, txt, xlsx, mp3, mp4, html, csv, json, py, php, js, css, cs, swift, kt, xml, ts, png, jpg, jpeg, webp, gif": "Файл для загрузки. Поддерживаемые типы файлов: pdf, docx, pptx, txt, xlsx, mp3, mp4, html, csv, json, py, php, js, css, cs, swift, kt, xml, ts, png, jpg, jpeg, webp, gif",
"Represents the name of the RAG base": "Представляет собой название базы RAG",
"Represents the description of the agent": "Представляет описание агента",
"Represents the file to be attached. Accepted file extensions are: pdf, docx, csv, txt, xlsx, py": "Представляет файл для вложения. Допустимые расширения файлов: pdf, docx, csv, txt, xlsx, py",
"Represents the chunking method to be used for generating the RAG base. The default value is fixed_size": "Представляет собой метод чанкинга, который будет использоваться для генерации базы RAG. Значение по умолчанию fixed_size",
"The size of each chunk (default: 1000)": "Размер каждого чанка (по умолчанию: 1000)",
"The overlap between chunks (default: 50)": "Перекрытие между чанками (по умолчанию: 50)",
"The separator to use for fixed_size chunking method": "Разделитель для метода обработки фиксированного размера",
"The separators to use for recursive chunking method": "Разделители для рекурсивного метода чанка",
"The breakpoint threshold type for semantic chunking method": "Тип порога точки останова для семантического метода отсекания",
"The buffer size for semantic chunking method": "Размер буфера для метода семантического обмотка",
"The ID of the RAG base to retrieve.": "ID RAG базы для извлечения.",
"The ID of the RAG base to update.": "ID RAG базы для обновления.",
"Represents the file to be attached. Accepted file extensions are: pdf, docx, csv, txt, xlsx, py.": "Представляет собой файл для вложения. Допустимые расширения файлов: pdf, docx, csv, txt, xlsx, py.",
"The ID of the RAG base to delete": "ID RAG базы для удаления",
"The ID of the RAG base to query": "ID базы RAG для запроса",
"A text prompt for the RAG model": "Текстовый запрос для модели RAG",
"The specific LLM to be used": "Конкретное ООО для использования",
"Type of search to perform": "Тип поиска для выполнения",
"Number of documents to return": "Количество документов для возврата",
"Amount of documents to pass to MMR algorithm": "Количество документов для передачи в алгоритм MMR",
"Diversity of results return by MMR (1 for minimum and 0 for maximum)": "Разнообразие результатов, возвращаемых по MMR (1 для минимального и 0 для максимума)",
"Minimum relevance threshold for similarity_score_threshold": "Минимальный порог релевантности для схожести_score_threshold",
"A name for the agent": "Имя агента",
"A brief description of what the model does": "Краткое описание того, что делает модель",
"A model that the agent will use for processing prompts": "Модель, которую Агент будет использовать для обработки запросов",
"The language model which the agent will use for processing prompts": "Языковая модель, которую агент будет использовать для обработки запросов",
"An array of tags for the agent. Example: [\"assistant\",\"tag\"]": "Массив тегов для агента. Пример: [\"Помощник\",\"tag\"]",
"The agent to add the RAG to.": "Агент для добавления RAG.",
"The ID of the RAG to add to the agent": "ID RAG для добавления к агенту",
"Select the agent to delete": "Выберите агента для удаления",
"Select the agent to update": "Выберите агента для обновления",
"New name for the agent": "Новое имя агента",
"New description for the agent": "Новое описание для агента",
"New custom prompt for the agent": "Новый пользовательский запрос для агента",
"New default LLM for the agent": "Новый стандартный LLM для агента",
"New status for the agent": "Новый статус агента",
"New visibility setting for the agent": "Новая настройка видимости для агента",
"Select the agent to get details for.": "Выберите агента для получения подробной информации.",
"Select the agent to prompt.": "Выберите агента для запроса.",
"The text prompt for the agent": "Текстовый запрос для агента",
"The search type to use for RAG model": "Тип поиска для модели RAG",
"Diversity of results returned by MMR (0 for minimum, 1 for maximum)": "Разнообразие результатов, полученных по MMR (0 для минимума, 1 для максимума)",
"Authorization headers are injected automatically from your connection.": "Заголовки авторизации включаются автоматически из вашего соединения.",
"openai/dall-e-3": "openai/dall-e-3",
"flux/1.1": "Flux/1.1",
"ideogram/V_2A": "ideogram/V_2A",
"ideogram/V_2A_TURBO": "ideogram/V_2A_TURBO",
"ideogram/V_2": "ideogram/V_2",
"ideogram/V_2_TURBO": "ideogram/V_2_TURBO",
"ideogram/V_1": "идеограмма/V_1",
"ideogram/V_1_TURBO": "ideogram/V_1_TURBO",
"square": "квадрат",
"landscape": "ландшафтный",
"portrait": "портрет",
"Percentile": "Процентиль",
"Interquartile": "Interquartile",
"Standard Deviation": "Стандартное отклонение",
"Gradient": "Градиент",
"Similarity": "Схожесть",
"MMR": "MMR",
"Similarity Score Threshold": "Порог сходства",
"Active": "Активен",
"Inactive": "Неактивный",
"Private": "Приватный",
"Public": "Публичный",
"GET": "ПОЛУЧИТЬ",
"POST": "ПОСТ",
"PATCH": "ПАТЧ",
"PUT": "ПОКУПИТЬ",
"DELETE": "УДАЛИТЬ",
"HEAD": "HEAD"
}

View File

@@ -0,0 +1,158 @@
{
"1": "1",
"2": "2",
"3": "3",
"4": "4",
"All-in-one generative AI platform": "All-in-one generative AI platform",
"\nFollow these instructions to get your Straico API Key:\n\n1. Visit the following website: https://platform.straico.com/user-settings.\n2. Once on the website, locate \"Connect with Straico API\" and click on the copy API Key.\n": "\nFollow these instructions to get your Straico API Key:\n\n1. Visit the following website: https://platform.straico.com/user-settings.\n2. Once on the website, locate \"Connect with Straico API\" and click on the copy API Key.\n",
"Ask AI": "Ask AI",
"Image Generation": "Image Generation",
"Upload File": "Upload File",
"Create RAG": "Create RAG",
"List RAGs": "List RAGs",
"Get RAG by ID": "Get RAG by ID",
"Update RAG": "Update RAG",
"Delete RAG": "Delete RAG",
"RAG Prompt Completion": "RAG Prompt Completion",
"Create Agent": "Create Agent",
"Add RAG to Agent": "Add RAG to Agent",
"List Agents": "List Agents",
"Delete Agent": "Delete Agent",
"Update Agent": "Update Agent",
"Get Agent Details": "Get Agent Details",
"Agent Prompt Completion": "Agent Prompt Completion",
"Custom API Call": "Custom API Call",
"Enables users to generate prompt completion based on a specified model.": "Enables users to generate prompt completion based on a specified model.",
"Enables users to generate high-quality images based on textual descriptions.": "Enables users to generate high-quality images based on textual descriptions.",
"Upload a file to Straico API for processing.": "Upload a file to Straico API for processing.",
"Create a new RAG (Retrieval-Augmented Generation) base in the database.": "Create a new RAG (Retrieval-Augmented Generation) base in the database.",
"List all RAG (Retrieval-Augmented Generation) bases for a user.": "List all RAG (Retrieval-Augmented Generation) bases for a user.",
"Retrieve a specific RAG (Retrieval-Augmented Generation) base by its ID.": "Retrieve a specific RAG (Retrieval-Augmented Generation) base by its ID.",
"Update an existing RAG (Retrieval-Augmented Generation) base with additional files.": "Update an existing RAG (Retrieval-Augmented Generation) base with additional files.",
"Delete a specific RAG (Retrieval-Augmented Generation) base by its ID.": "Delete a specific RAG (Retrieval-Augmented Generation) base by its ID.",
"Send a prompt to a specific RAG (Retrieval-Augmented Generation) model.": "Send a prompt to a specific RAG (Retrieval-Augmented Generation) model.",
"Creates a new agent in the database for the user.": "Creates a new agent in the database for the user.",
"Adds a new RAG to an agent in the database for the user.": "Adds a new RAG to an agent in the database for the user.",
"Retrieves the list of agents created by and available to the user.": "Retrieves the list of agents created by and available to the user.",
"Delete a specific agent by its ID": "Delete a specific agent by its ID",
"Update the details of a specific agent": "Update the details of a specific agent",
"Retrieve details of a specific agent": "Retrieve details of a specific agent",
"Prompt an agent with a message and get a response": "Prompt an agent with a message and get a response",
"Make a custom API call to a specific endpoint": "Make a custom API call to a specific endpoint",
"Model": "Model",
"Prompt": "Prompt",
"File URLs": "File URLs",
"YouTube URLs": "YouTube URLs",
"Image URLs": "Image URLs",
"Display Transcripts": "Display Transcripts",
"Temperature": "Temperature",
"Max Tokens": "Max Tokens",
"Number of Images": "Number of Images",
"Image Dimensions": "Image Dimensions",
"Description": "Description",
"File": "File",
"Name": "Name",
"Chunking Method": "Chunking Method",
"Chunk Size": "Chunk Size",
"Chunk Overlap": "Chunk Overlap",
"Separator": "Separator",
"Separators": "Separators",
"Breakpoint Threshold Type": "Breakpoint Threshold Type",
"Buffer Size": "Buffer Size",
"RAG ID": "RAG ID",
"Search Type": "Search Type",
"Number of Documents": "Number of Documents",
"Fetch K": "Fetch K",
"Lambda Mult": "Lambda Mult",
"Score Threshold": "Score Threshold",
"Custom Prompt": "Custom Prompt",
"Default LLM": "Default LLM",
"Tags": "Tags",
"Agent": "Agent",
"Status": "Status",
"Visibility": "Visibility",
"Method": "Method",
"Headers": "Headers",
"Query Parameters": "Query Parameters",
"Body": "Body",
"Response is Binary ?": "Response is Binary ?",
"No Error on Failure": "No Error on Failure",
"Timeout (in seconds)": "Timeout (in seconds)",
"The model which will generate the completion. Some models are suitable for natural language tasks, others specialize in code.": "The model which will generate the completion. Some models are suitable for natural language tasks, others specialize in code.",
"The prompt text for which completions are requested": "The prompt text for which completions are requested",
"URLs of files to be processed by the model (maximum 4 URLs), previously uploaded via the File Upload endpoint": "URLs of files to be processed by the model (maximum 4 URLs), previously uploaded via the File Upload endpoint",
"URLs of YouTube videos to be processed by the model (maximum 4 URLs)": "URLs of YouTube videos to be processed by the model (maximum 4 URLs)",
"URLs of images to be processed by the model, previously uploaded via the File Upload endpoint": "URLs of images to be processed by the model, previously uploaded via the File Upload endpoint",
"If true, returns transcripts of the files. Note: Either File URLs or YouTube URLs are required when this is enabled": "If true, returns transcripts of the files. Note: Either File URLs or YouTube URLs are required when this is enabled",
"This setting influences the variety in the model's responses (0-2)": "This setting influences the variety in the model's responses (0-2)",
"Set the limit for the number of tokens the model can generate in response": "Set the limit for the number of tokens the model can generate in response",
"Number of images to generate.": "Number of images to generate.",
"Select the image generation model.": "Select the image generation model.",
"The desired image dimensions.": "The desired image dimensions.",
"A detailed textual description of the image to be generated.": "A detailed textual description of the image to be generated.",
"The file to upload. Supported file types: pdf, docx, pptx, txt, xlsx, mp3, mp4, html, csv, json, py, php, js, css, cs, swift, kt, xml, ts, png, jpg, jpeg, webp, gif": "The file to upload. Supported file types: pdf, docx, pptx, txt, xlsx, mp3, mp4, html, csv, json, py, php, js, css, cs, swift, kt, xml, ts, png, jpg, jpeg, webp, gif",
"Represents the name of the RAG base": "Represents the name of the RAG base",
"Represents the description of the agent": "Represents the description of the agent",
"Represents the file to be attached. Accepted file extensions are: pdf, docx, csv, txt, xlsx, py": "Represents the file to be attached. Accepted file extensions are: pdf, docx, csv, txt, xlsx, py",
"Represents the chunking method to be used for generating the RAG base. The default value is fixed_size": "Represents the chunking method to be used for generating the RAG base. The default value is fixed_size",
"The size of each chunk (default: 1000)": "The size of each chunk (default: 1000)",
"The overlap between chunks (default: 50)": "The overlap between chunks (default: 50)",
"The separator to use for fixed_size chunking method": "The separator to use for fixed_size chunking method",
"The separators to use for recursive chunking method": "The separators to use for recursive chunking method",
"The breakpoint threshold type for semantic chunking method": "The breakpoint threshold type for semantic chunking method",
"The buffer size for semantic chunking method": "The buffer size for semantic chunking method",
"The ID of the RAG base to retrieve.": "The ID of the RAG base to retrieve.",
"The ID of the RAG base to update.": "The ID of the RAG base to update.",
"Represents the file to be attached. Accepted file extensions are: pdf, docx, csv, txt, xlsx, py.": "Represents the file to be attached. Accepted file extensions are: pdf, docx, csv, txt, xlsx, py.",
"The ID of the RAG base to delete": "The ID of the RAG base to delete",
"The ID of the RAG base to query": "The ID of the RAG base to query",
"A text prompt for the RAG model": "A text prompt for the RAG model",
"The specific LLM to be used": "The specific LLM to be used",
"Type of search to perform": "Type of search to perform",
"Number of documents to return": "Number of documents to return",
"Amount of documents to pass to MMR algorithm": "Amount of documents to pass to MMR algorithm",
"Diversity of results return by MMR (1 for minimum and 0 for maximum)": "Diversity of results return by MMR (1 for minimum and 0 for maximum)",
"Minimum relevance threshold for similarity_score_threshold": "Minimum relevance threshold for similarity_score_threshold",
"A name for the agent": "A name for the agent",
"A brief description of what the model does": "A brief description of what the model does",
"A model that the agent will use for processing prompts": "A model that the agent will use for processing prompts",
"The language model which the agent will use for processing prompts": "The language model which the agent will use for processing prompts",
"An array of tags for the agent. Example: [\"assistant\",\"tag\"]": "An array of tags for the agent. Example: [\"assistant\",\"tag\"]",
"The agent to add the RAG to.": "The agent to add the RAG to.",
"The ID of the RAG to add to the agent": "The ID of the RAG to add to the agent",
"Select the agent to delete": "Select the agent to delete",
"Select the agent to update": "Select the agent to update",
"New name for the agent": "New name for the agent",
"New description for the agent": "New description for the agent",
"New custom prompt for the agent": "New custom prompt for the agent",
"New default LLM for the agent": "New default LLM for the agent",
"New status for the agent": "New status for the agent",
"New visibility setting for the agent": "New visibility setting for the agent",
"Select the agent to get details for.": "Select the agent to get details for.",
"Select the agent to prompt.": "Select the agent to prompt.",
"The text prompt for the agent": "The text prompt for the agent",
"The search type to use for RAG model": "The search type to use for RAG model",
"Diversity of results returned by MMR (0 for minimum, 1 for maximum)": "Diversity of results returned by MMR (0 for minimum, 1 for maximum)",
"Authorization headers are injected automatically from your connection.": "Authorization headers are injected automatically from your connection.",
"Enable for files like PDFs, images, etc..": "Enable for files like PDFs, images, etc..",
"square": "square",
"landscape": "landscape",
"portrait": "portrait",
"Percentile": "Percentile",
"Interquartile": "Interquartile",
"Standard Deviation": "Standard Deviation",
"Gradient": "Gradient",
"Similarity": "Similarity",
"MMR": "MMR",
"Similarity Score Threshold": "Similarity Score Threshold",
"Active": "Active",
"Inactive": "Inactive",
"Private": "Private",
"Public": "Public",
"GET": "GET",
"POST": "POST",
"PATCH": "PATCH",
"PUT": "PUT",
"DELETE": "DELETE",
"HEAD": "HEAD"
}

View File

@@ -0,0 +1,165 @@
{
"1": "1",
"2": "2",
"3": "3",
"4": "4",
"Straico": "Straico",
"All-in-one generative AI platform": "All-in-one generative AI platform",
"\nFollow these instructions to get your Straico API Key:\n\n1. Visit the following website: https://platform.straico.com/user-settings.\n2. Once on the website, locate \"Connect with Straico API\" and click on the copy API Key.\n": "\nFollow these instructions to get your Straico API Key:\n\n1. Visit the following website: https://platform.straico.com/user-settings.\n2. Once on the website, locate \"Connect with Straico API\" and click on the copy API Key.\n",
"Ask AI": "Ask AI",
"Image Generation": "Image Generation",
"Upload File": "Upload File",
"Create RAG": "Create RAG",
"List RAGs": "List RAGs",
"Get RAG by ID": "Get RAG by ID",
"Update RAG": "Update RAG",
"Delete RAG": "Delete RAG",
"RAG Prompt Completion": "RAG Prompt Completion",
"Create Agent": "Create Agent",
"Add RAG to Agent": "Add RAG to Agent",
"List Agents": "List Agents",
"Delete Agent": "Delete Agent",
"Update Agent": "Update Agent",
"Get Agent Details": "Get Agent Details",
"Agent Prompt Completion": "Agent Prompt Completion",
"Custom API Call": "Custom API Call",
"Enables users to generate prompt completion based on a specified model.": "Enables users to generate prompt completion based on a specified model.",
"Enables users to generate high-quality images based on textual descriptions.": "Enables users to generate high-quality images based on textual descriptions.",
"Upload a file to Straico API for processing.": "Upload a file to Straico API for processing.",
"Create a new RAG (Retrieval-Augmented Generation) base in the database.": "Create a new RAG (Retrieval-Augmented Generation) base in the database.",
"List all RAG (Retrieval-Augmented Generation) bases for a user.": "List all RAG (Retrieval-Augmented Generation) bases for a user.",
"Retrieve a specific RAG (Retrieval-Augmented Generation) base by its ID.": "Retrieve a specific RAG (Retrieval-Augmented Generation) base by its ID.",
"Update an existing RAG (Retrieval-Augmented Generation) base with additional files.": "Update an existing RAG (Retrieval-Augmented Generation) base with additional files.",
"Delete a specific RAG (Retrieval-Augmented Generation) base by its ID.": "Delete a specific RAG (Retrieval-Augmented Generation) base by its ID.",
"Send a prompt to a specific RAG (Retrieval-Augmented Generation) model.": "Send a prompt to a specific RAG (Retrieval-Augmented Generation) model.",
"Creates a new agent in the database for the user.": "Creates a new agent in the database for the user.",
"Adds a new RAG to an agent in the database for the user.": "Adds a new RAG to an agent in the database for the user.",
"Retrieves the list of agents created by and available to the user.": "Retrieves the list of agents created by and available to the user.",
"Delete a specific agent by its ID": "Delete a specific agent by its ID",
"Update the details of a specific agent": "Update the details of a specific agent",
"Retrieve details of a specific agent": "Retrieve details of a specific agent",
"Prompt an agent with a message and get a response": "Prompt an agent with a message and get a response",
"Make a custom API call to a specific endpoint": "Make a custom API call to a specific endpoint",
"Model": "Model",
"Prompt": "Prompt",
"File URLs": "File URLs",
"YouTube URLs": "YouTube URLs",
"Image URLs": "Image URLs",
"Display Transcripts": "Display Transcripts",
"Temperature": "Temperature",
"Max Tokens": "Max Tokens",
"Number of Images": "Number of Images",
"Image Dimensions": "Image Dimensions",
"Description": "Description",
"File": "File",
"Name": "Name",
"Chunking Method": "Chunking Method",
"Chunk Size": "Chunk Size",
"Chunk Overlap": "Chunk Overlap",
"Separator": "Separator",
"Separators": "Separators",
"Breakpoint Threshold Type": "Breakpoint Threshold Type",
"Buffer Size": "Buffer Size",
"RAG ID": "RAG ID",
"Search Type": "Search Type",
"Number of Documents": "Number of Documents",
"Fetch K": "Fetch K",
"Lambda Mult": "Lambda Mult",
"Score Threshold": "Score Threshold",
"Custom Prompt": "Custom Prompt",
"Default LLM": "Default LLM",
"Tags": "Tags",
"Agent": "Agent",
"Status": "Status",
"Visibility": "Visibility",
"Method": "Method",
"Headers": "Headers",
"Query Parameters": "Query Parameters",
"Body": "Body",
"No Error on Failure": "No Error on Failure",
"Timeout (in seconds)": "Timeout (in seconds)",
"The model which will generate the completion. Some models are suitable for natural language tasks, others specialize in code.": "The model which will generate the completion. Some models are suitable for natural language tasks, others specialize in code.",
"The prompt text for which completions are requested": "The prompt text for which completions are requested",
"URLs of files to be processed by the model (maximum 4 URLs), previously uploaded via the File Upload endpoint": "URLs of files to be processed by the model (maximum 4 URLs), previously uploaded via the File Upload endpoint",
"URLs of YouTube videos to be processed by the model (maximum 4 URLs)": "URLs of YouTube videos to be processed by the model (maximum 4 URLs)",
"URLs of images to be processed by the model, previously uploaded via the File Upload endpoint": "URLs of images to be processed by the model, previously uploaded via the File Upload endpoint",
"If true, returns transcripts of the files. Note: Either File URLs or YouTube URLs are required when this is enabled": "If true, returns transcripts of the files. Note: Either File URLs or YouTube URLs are required when this is enabled",
"This setting influences the variety in the model's responses (0-2)": "This setting influences the variety in the model's responses (0-2)",
"Set the limit for the number of tokens the model can generate in response": "Set the limit for the number of tokens the model can generate in response",
"Number of images to generate.": "Number of images to generate.",
"Select the image generation model.": "Select the image generation model.",
"The desired image dimensions.": "The desired image dimensions.",
"A detailed textual description of the image to be generated.": "A detailed textual description of the image to be generated.",
"The file to upload. Supported file types: pdf, docx, pptx, txt, xlsx, mp3, mp4, html, csv, json, py, php, js, css, cs, swift, kt, xml, ts, png, jpg, jpeg, webp, gif": "The file to upload. Supported file types: pdf, docx, pptx, txt, xlsx, mp3, mp4, html, csv, json, py, php, js, css, cs, swift, kt, xml, ts, png, jpg, jpeg, webp, gif",
"Represents the name of the RAG base": "Represents the name of the RAG base",
"Represents the description of the agent": "Represents the description of the agent",
"Represents the file to be attached. Accepted file extensions are: pdf, docx, csv, txt, xlsx, py": "Represents the file to be attached. Accepted file extensions are: pdf, docx, csv, txt, xlsx, py",
"Represents the chunking method to be used for generating the RAG base. The default value is fixed_size": "Represents the chunking method to be used for generating the RAG base. The default value is fixed_size",
"The size of each chunk (default: 1000)": "The size of each chunk (default: 1000)",
"The overlap between chunks (default: 50)": "The overlap between chunks (default: 50)",
"The separator to use for fixed_size chunking method": "The separator to use for fixed_size chunking method",
"The separators to use for recursive chunking method": "The separators to use for recursive chunking method",
"The breakpoint threshold type for semantic chunking method": "The breakpoint threshold type for semantic chunking method",
"The buffer size for semantic chunking method": "The buffer size for semantic chunking method",
"The ID of the RAG base to retrieve.": "The ID of the RAG base to retrieve.",
"The ID of the RAG base to update.": "The ID of the RAG base to update.",
"Represents the file to be attached. Accepted file extensions are: pdf, docx, csv, txt, xlsx, py.": "Represents the file to be attached. Accepted file extensions are: pdf, docx, csv, txt, xlsx, py.",
"The ID of the RAG base to delete": "The ID of the RAG base to delete",
"The ID of the RAG base to query": "The ID of the RAG base to query",
"A text prompt for the RAG model": "A text prompt for the RAG model",
"The specific LLM to be used": "The specific LLM to be used",
"Type of search to perform": "Type of search to perform",
"Number of documents to return": "Number of documents to return",
"Amount of documents to pass to MMR algorithm": "Amount of documents to pass to MMR algorithm",
"Diversity of results return by MMR (1 for minimum and 0 for maximum)": "Diversity of results return by MMR (1 for minimum and 0 for maximum)",
"Minimum relevance threshold for similarity_score_threshold": "Minimum relevance threshold for similarity_score_threshold",
"A name for the agent": "A name for the agent",
"A brief description of what the model does": "A brief description of what the model does",
"A model that the agent will use for processing prompts": "A model that the agent will use for processing prompts",
"The language model which the agent will use for processing prompts": "The language model which the agent will use for processing prompts",
"An array of tags for the agent. Example: [\"assistant\",\"tag\"]": "An array of tags for the agent. Example: [\"assistant\",\"tag\"]",
"The agent to add the RAG to.": "The agent to add the RAG to.",
"The ID of the RAG to add to the agent": "The ID of the RAG to add to the agent",
"Select the agent to delete": "Select the agent to delete",
"Select the agent to update": "Select the agent to update",
"New name for the agent": "New name for the agent",
"New description for the agent": "New description for the agent",
"New custom prompt for the agent": "New custom prompt for the agent",
"New default LLM for the agent": "New default LLM for the agent",
"New status for the agent": "New status for the agent",
"New visibility setting for the agent": "New visibility setting for the agent",
"Select the agent to get details for.": "Select the agent to get details for.",
"Select the agent to prompt.": "Select the agent to prompt.",
"The text prompt for the agent": "The text prompt for the agent",
"The search type to use for RAG model": "The search type to use for RAG model",
"Diversity of results returned by MMR (0 for minimum, 1 for maximum)": "Diversity of results returned by MMR (0 for minimum, 1 for maximum)",
"Authorization headers are injected automatically from your connection.": "Authorization headers are injected automatically from your connection.",
"openai/dall-e-3": "openai/dall-e-3",
"flux/1.1": "flux/1.1",
"ideogram/V_2A": "ideogram/V_2A",
"ideogram/V_2A_TURBO": "ideogram/V_2A_TURBO",
"ideogram/V_2": "ideogram/V_2",
"ideogram/V_2_TURBO": "ideogram/V_2_TURBO",
"ideogram/V_1": "ideogram/V_1",
"ideogram/V_1_TURBO": "ideogram/V_1_TURBO",
"square": "square",
"landscape": "landscape",
"portrait": "portrait",
"Percentile": "Percentile",
"Interquartile": "Interquartile",
"Standard Deviation": "Standard Deviation",
"Gradient": "Gradient",
"Similarity": "Similarity",
"MMR": "MMR",
"Similarity Score Threshold": "Similarity Score Threshold",
"Active": "Tích cực",
"Inactive": "Inactive",
"Private": "Private",
"Public": "Public",
"GET": "GET",
"POST": "POST",
"PATCH": "PATCH",
"PUT": "PUT",
"DELETE": "DELETE",
"HEAD": "HEAD"
}

View File

@@ -0,0 +1,158 @@
{
"1": "1",
"2": "2",
"3": "3",
"4": "4",
"All-in-one generative AI platform": "All-in-one generative AI platform",
"\nFollow these instructions to get your Straico API Key:\n\n1. Visit the following website: https://platform.straico.com/user-settings.\n2. Once on the website, locate \"Connect with Straico API\" and click on the copy API Key.\n": "\nFollow these instructions to get your Straico API Key:\n\n1. Visit the following website: https://platform.straico.com/user-settings.\n2. Once on the website, locate \"Connect with Straico API\" and click on the copy API Key.\n",
"Ask AI": "询问AI",
"Image Generation": "Image Generation",
"Upload File": "Upload File",
"Create RAG": "Create RAG",
"List RAGs": "List RAGs",
"Get RAG by ID": "Get RAG by ID",
"Update RAG": "Update RAG",
"Delete RAG": "Delete RAG",
"RAG Prompt Completion": "RAG Prompt Completion",
"Create Agent": "Create Agent",
"Add RAG to Agent": "Add RAG to Agent",
"List Agents": "List Agents",
"Delete Agent": "Delete Agent",
"Update Agent": "Update Agent",
"Get Agent Details": "Get Agent Details",
"Agent Prompt Completion": "Agent Prompt Completion",
"Custom API Call": "自定义 API 呼叫",
"Enables users to generate prompt completion based on a specified model.": "Enables users to generate prompt completion based on a specified model.",
"Enables users to generate high-quality images based on textual descriptions.": "Enables users to generate high-quality images based on textual descriptions.",
"Upload a file to Straico API for processing.": "Upload a file to Straico API for processing.",
"Create a new RAG (Retrieval-Augmented Generation) base in the database.": "Create a new RAG (Retrieval-Augmented Generation) base in the database.",
"List all RAG (Retrieval-Augmented Generation) bases for a user.": "List all RAG (Retrieval-Augmented Generation) bases for a user.",
"Retrieve a specific RAG (Retrieval-Augmented Generation) base by its ID.": "Retrieve a specific RAG (Retrieval-Augmented Generation) base by its ID.",
"Update an existing RAG (Retrieval-Augmented Generation) base with additional files.": "Update an existing RAG (Retrieval-Augmented Generation) base with additional files.",
"Delete a specific RAG (Retrieval-Augmented Generation) base by its ID.": "Delete a specific RAG (Retrieval-Augmented Generation) base by its ID.",
"Send a prompt to a specific RAG (Retrieval-Augmented Generation) model.": "Send a prompt to a specific RAG (Retrieval-Augmented Generation) model.",
"Creates a new agent in the database for the user.": "Creates a new agent in the database for the user.",
"Adds a new RAG to an agent in the database for the user.": "Adds a new RAG to an agent in the database for the user.",
"Retrieves the list of agents created by and available to the user.": "Retrieves the list of agents created by and available to the user.",
"Delete a specific agent by its ID": "Delete a specific agent by its ID",
"Update the details of a specific agent": "Update the details of a specific agent",
"Retrieve details of a specific agent": "Retrieve details of a specific agent",
"Prompt an agent with a message and get a response": "Prompt an agent with a message and get a response",
"Make a custom API call to a specific endpoint": "将一个自定义 API 调用到一个特定的终点",
"Model": "Model",
"Prompt": "Prompt",
"File URLs": "File URLs",
"YouTube URLs": "YouTube URLs",
"Image URLs": "Image URLs",
"Display Transcripts": "Display Transcripts",
"Temperature": "Temperature",
"Max Tokens": "Max Tokens",
"Number of Images": "Number of Images",
"Image Dimensions": "Image Dimensions",
"Description": "描述",
"File": "文件",
"Name": "名称",
"Chunking Method": "Chunking Method",
"Chunk Size": "Chunk Size",
"Chunk Overlap": "Chunk Overlap",
"Separator": "分隔符",
"Separators": "Separators",
"Breakpoint Threshold Type": "Breakpoint Threshold Type",
"Buffer Size": "Buffer Size",
"RAG ID": "RAG ID",
"Search Type": "Search Type",
"Number of Documents": "Number of Documents",
"Fetch K": "Fetch K",
"Lambda Mult": "Lambda Mult",
"Score Threshold": "Score Threshold",
"Custom Prompt": "Custom Prompt",
"Default LLM": "Default LLM",
"Tags": "标签",
"Agent": "Agent",
"Status": "状态",
"Visibility": "Visibility",
"Method": "方法",
"Headers": "信头",
"Query Parameters": "查询参数",
"Body": "正文内容",
"Response is Binary ?": "Response is Binary ?",
"No Error on Failure": "失败时没有错误",
"Timeout (in seconds)": "超时(秒)",
"The model which will generate the completion. Some models are suitable for natural language tasks, others specialize in code.": "The model which will generate the completion. Some models are suitable for natural language tasks, others specialize in code.",
"The prompt text for which completions are requested": "The prompt text for which completions are requested",
"URLs of files to be processed by the model (maximum 4 URLs), previously uploaded via the File Upload endpoint": "URLs of files to be processed by the model (maximum 4 URLs), previously uploaded via the File Upload endpoint",
"URLs of YouTube videos to be processed by the model (maximum 4 URLs)": "URLs of YouTube videos to be processed by the model (maximum 4 URLs)",
"URLs of images to be processed by the model, previously uploaded via the File Upload endpoint": "URLs of images to be processed by the model, previously uploaded via the File Upload endpoint",
"If true, returns transcripts of the files. Note: Either File URLs or YouTube URLs are required when this is enabled": "If true, returns transcripts of the files. Note: Either File URLs or YouTube URLs are required when this is enabled",
"This setting influences the variety in the model's responses (0-2)": "This setting influences the variety in the model's responses (0-2)",
"Set the limit for the number of tokens the model can generate in response": "Set the limit for the number of tokens the model can generate in response",
"Number of images to generate.": "Number of images to generate.",
"Select the image generation model.": "Select the image generation model.",
"The desired image dimensions.": "The desired image dimensions.",
"A detailed textual description of the image to be generated.": "A detailed textual description of the image to be generated.",
"The file to upload. Supported file types: pdf, docx, pptx, txt, xlsx, mp3, mp4, html, csv, json, py, php, js, css, cs, swift, kt, xml, ts, png, jpg, jpeg, webp, gif": "The file to upload. Supported file types: pdf, docx, pptx, txt, xlsx, mp3, mp4, html, csv, json, py, php, js, css, cs, swift, kt, xml, ts, png, jpg, jpeg, webp, gif",
"Represents the name of the RAG base": "Represents the name of the RAG base",
"Represents the description of the agent": "Represents the description of the agent",
"Represents the file to be attached. Accepted file extensions are: pdf, docx, csv, txt, xlsx, py": "Represents the file to be attached. Accepted file extensions are: pdf, docx, csv, txt, xlsx, py",
"Represents the chunking method to be used for generating the RAG base. The default value is fixed_size": "Represents the chunking method to be used for generating the RAG base. The default value is fixed_size",
"The size of each chunk (default: 1000)": "The size of each chunk (default: 1000)",
"The overlap between chunks (default: 50)": "The overlap between chunks (default: 50)",
"The separator to use for fixed_size chunking method": "The separator to use for fixed_size chunking method",
"The separators to use for recursive chunking method": "The separators to use for recursive chunking method",
"The breakpoint threshold type for semantic chunking method": "The breakpoint threshold type for semantic chunking method",
"The buffer size for semantic chunking method": "The buffer size for semantic chunking method",
"The ID of the RAG base to retrieve.": "The ID of the RAG base to retrieve.",
"The ID of the RAG base to update.": "The ID of the RAG base to update.",
"Represents the file to be attached. Accepted file extensions are: pdf, docx, csv, txt, xlsx, py.": "Represents the file to be attached. Accepted file extensions are: pdf, docx, csv, txt, xlsx, py.",
"The ID of the RAG base to delete": "The ID of the RAG base to delete",
"The ID of the RAG base to query": "The ID of the RAG base to query",
"A text prompt for the RAG model": "A text prompt for the RAG model",
"The specific LLM to be used": "The specific LLM to be used",
"Type of search to perform": "Type of search to perform",
"Number of documents to return": "Number of documents to return",
"Amount of documents to pass to MMR algorithm": "Amount of documents to pass to MMR algorithm",
"Diversity of results return by MMR (1 for minimum and 0 for maximum)": "Diversity of results return by MMR (1 for minimum and 0 for maximum)",
"Minimum relevance threshold for similarity_score_threshold": "Minimum relevance threshold for similarity_score_threshold",
"A name for the agent": "A name for the agent",
"A brief description of what the model does": "A brief description of what the model does",
"A model that the agent will use for processing prompts": "A model that the agent will use for processing prompts",
"The language model which the agent will use for processing prompts": "The language model which the agent will use for processing prompts",
"An array of tags for the agent. Example: [\"assistant\",\"tag\"]": "An array of tags for the agent. Example: [\"assistant\",\"tag\"]",
"The agent to add the RAG to.": "The agent to add the RAG to.",
"The ID of the RAG to add to the agent": "The ID of the RAG to add to the agent",
"Select the agent to delete": "Select the agent to delete",
"Select the agent to update": "Select the agent to update",
"New name for the agent": "New name for the agent",
"New description for the agent": "New description for the agent",
"New custom prompt for the agent": "New custom prompt for the agent",
"New default LLM for the agent": "New default LLM for the agent",
"New status for the agent": "New status for the agent",
"New visibility setting for the agent": "New visibility setting for the agent",
"Select the agent to get details for.": "Select the agent to get details for.",
"Select the agent to prompt.": "Select the agent to prompt.",
"The text prompt for the agent": "The text prompt for the agent",
"The search type to use for RAG model": "The search type to use for RAG model",
"Diversity of results returned by MMR (0 for minimum, 1 for maximum)": "Diversity of results returned by MMR (0 for minimum, 1 for maximum)",
"Authorization headers are injected automatically from your connection.": "授权头自动从您的连接中注入。",
"Enable for files like PDFs, images, etc..": "Enable for files like PDFs, images, etc..",
"square": "square",
"landscape": "landscape",
"portrait": "portrait",
"Percentile": "Percentile",
"Interquartile": "Interquartile",
"Standard Deviation": "Standard Deviation",
"Gradient": "Gradient",
"Similarity": "Similarity",
"MMR": "MMR",
"Similarity Score Threshold": "Similarity Score Threshold",
"Active": "使用中",
"Inactive": "Inactive",
"Private": "Private",
"Public": "Public",
"GET": "获取",
"POST": "帖子",
"PATCH": "PATCH",
"PUT": "弹出",
"DELETE": "删除",
"HEAD": "黑色"
}

View File

@@ -0,0 +1,98 @@
import { createPiece, PieceAuth } from '@activepieces/pieces-framework';
import {
AuthenticationType,
HttpMethod,
createCustomApiCallAction,
httpClient,
} from '@activepieces/pieces-common';
import { baseUrlv1 } from './lib/common/common';
import { promptCompletion } from './lib/actions/prompt-completion';
import { imageGeneration } from './lib/actions/image-generation';
import { fileUpload } from './lib/actions/file-upload';
import { createRag } from './lib/actions/rag-create';
import { listRags } from './lib/actions/rag-list';
import { getRagById } from './lib/actions/rag-get-by-id';
import { updateRag } from './lib/actions/rag-update';
import { deleteRag } from './lib/actions/rag-delete';
import { ragPromptCompletion } from './lib/actions/rag-prompt-completion';
import { agentCreate } from './lib/actions/agent-create';
import { agentAddRag } from './lib/actions/agent-add-rag';
import { agentList } from './lib/actions/agent-list';
import { agentDelete } from './lib/actions/agent-delete';
import { agentUpdate } from './lib/actions/agent-update';
import { agentGet } from './lib/actions/agent-get';
import { agentPromptCompletion } from './lib/actions/agent-prompt-completion';
import { PieceCategory } from '@activepieces/shared';
const markdownDescription = `
Follow these instructions to get your Straico API Key:
1. Visit the following website: https://platform.straico.com/user-settings.
2. Once on the website, locate "Connect with Straico API" and click on the copy API Key.
`;
export const straicoAuth = PieceAuth.SecretText({
description: markdownDescription,
displayName: 'API Key',
required: true,
validate: async (auth) => {
try {
await httpClient.sendRequest<{
data: { model: string }[];
}>({
url: `${baseUrlv1}/models`,
method: HttpMethod.GET,
authentication: {
type: AuthenticationType.BEARER_TOKEN,
token: auth.auth,
},
});
return {
valid: true,
};
} catch (e) {
return {
valid: false,
error: 'Invalid API key',
};
}
},
});
export const straico = createPiece({
displayName: 'Straico',
auth: straicoAuth,
minimumSupportedRelease: '0.30.0',
logoUrl: 'https://cdn.activepieces.com/pieces/straico.png',
categories: [PieceCategory.ARTIFICIAL_INTELLIGENCE],
description: 'All-in-one generative AI platform',
authors: ['dennisrongo'],
actions: [
promptCompletion,
imageGeneration,
fileUpload,
createRag,
listRags,
getRagById,
updateRag,
deleteRag,
ragPromptCompletion,
agentCreate,
agentAddRag,
agentList,
agentDelete,
agentUpdate,
agentGet,
agentPromptCompletion,
createCustomApiCallAction({
auth: straicoAuth,
baseUrl: () => baseUrlv1,
authMapping: async (auth) => {
return {
Authorization: `Bearer ${auth.secret_text}`,
};
},
}),
],
triggers: [],
});

View File

@@ -0,0 +1,103 @@
import { straicoAuth } from '../../index';
import { createAction, Property } from '@activepieces/pieces-framework';
import {
AuthenticationType,
HttpMethod,
httpClient,
} from '@activepieces/pieces-common';
import { baseUrlv0 } from '../common/common';
import { agentIdDropdown } from '../common/props';
interface AgentAddRagResponse {
success: boolean;
data: {
uuid4: string;
user_id: string;
default_llm: string;
custom_prompt: string;
name: string;
description: string;
status: string;
tags: string[];
last_interaction: null | string;
interaction_count: number;
visibility: string;
_id: string;
};
}
export const agentAddRag = createAction({
auth: straicoAuth,
name: 'agent-add-rag',
displayName: 'Add RAG to Agent',
description: 'Adds a new RAG to an agent in the database for the user.',
props: {
agent_id: agentIdDropdown('Agent','The agent to add the RAG to.'),
rag_id: Property.Dropdown({
auth: straicoAuth,
displayName: 'RAG ID',
required: true,
description: 'The ID of the RAG to add to the agent',
refreshers: [],
options: async ({ auth }) => {
if (!auth) {
return {
disabled: true,
placeholder: 'Enter your API key first',
options: [],
};
}
try {
const rags = await httpClient.sendRequest<{
success: boolean;
data: Array<{
_id: string;
name: string;
}>;
}>({
url: `${baseUrlv0}/rag/user`,
method: HttpMethod.GET,
authentication: {
type: AuthenticationType.BEARER_TOKEN,
token: auth.secret_text,
},
});
return {
disabled: false,
options:
rags.body?.data?.map((rag) => {
return {
label: rag.name,
value: rag._id,
};
}) || [],
};
} catch (error) {
return {
disabled: true,
options: [],
placeholder: "Couldn't load RAGs, API key is invalid",
};
}
},
}),
},
async run({ auth, propsValue }) {
const { agent_id, rag_id } = propsValue;
const response = await httpClient.sendRequest<AgentAddRagResponse>({
url: `${baseUrlv0}/agent/${agent_id}/rag`,
method: HttpMethod.POST,
authentication: {
type: AuthenticationType.BEARER_TOKEN,
token: auth.secret_text,
},
body: {
rag: rag_id,
},
});
return response.body;
},
});

View File

@@ -0,0 +1,139 @@
import { straicoAuth } from '../../index';
import { createAction, Property } from '@activepieces/pieces-framework';
import {
AuthenticationType,
HttpMethod,
httpClient,
} from '@activepieces/pieces-common';
import { baseUrlv0, baseUrlv1 } from '../common/common';
interface AgentCreateRequest {
name: string;
description: string;
custom_prompt: string;
default_llm: string;
tags?: string[];
}
interface AgentCreateResponse {
success: boolean;
data: {
uuid4: string;
user_id: string;
default_llm: string;
custom_prompt: string;
name: string;
description: string;
status: string;
tags: string[];
last_interaction: null | string;
interaction_count: number;
visibility: string;
_id: string;
__v: number;
};
}
export const agentCreate = createAction({
auth: straicoAuth,
name: 'agent-create',
displayName: 'Create Agent',
description: 'Creates a new agent in the database for the user.',
props: {
name: Property.ShortText({
displayName: 'Name',
required: true,
description: 'A name for the agent',
}),
description: Property.LongText({
displayName: 'Description',
required: true,
description: 'A brief description of what the model does',
}),
custom_prompt: Property.LongText({
displayName: 'Custom Prompt',
required: true,
description: 'A model that the agent will use for processing prompts',
}),
default_llm: Property.Dropdown({
auth: straicoAuth,
displayName: 'Default LLM',
required: true,
description: 'The language model which the agent will use for processing prompts',
refreshers: [],
defaultValue: 'openai/gpt-4o-mini',
options: async ({ auth }) => {
if (!auth) {
return {
disabled: true,
placeholder: 'Enter your API key first',
options: [],
};
}
try {
const models = await httpClient.sendRequest<{
data: {
chat: Array<{
name: string;
model: string;
}>;
};
}>({
url: `${baseUrlv1}/models`,
method: HttpMethod.GET,
authentication: {
type: AuthenticationType.BEARER_TOKEN,
token: auth.secret_text,
},
});
return {
disabled: false,
options:
models.body?.data?.chat?.map((model) => {
return {
label: model.name,
value: model.model,
};
}) || [],
};
} catch (error) {
return {
disabled: true,
options: [],
placeholder: "Couldn't load models, API key is invalid",
};
}
},
}),
tags: Property.Array({
displayName: 'Tags',
required: false,
description: 'An array of tags for the agent. Example: ["assistant","tag"]',
}),
},
async run({ auth, propsValue }) {
const { name, description, custom_prompt, default_llm, tags } = propsValue;
const requestBody: AgentCreateRequest = {
name,
description,
custom_prompt,
default_llm,
tags: tags as string[],
};
const response = await httpClient.sendRequest<AgentCreateResponse>({
url: `${baseUrlv0}/agent`,
method: HttpMethod.POST,
authentication: {
type: AuthenticationType.BEARER_TOKEN,
token: auth.secret_text,
},
body: requestBody,
});
return response.body;
},
});

View File

@@ -0,0 +1,40 @@
import { straicoAuth } from '../../index';
import { createAction, Property } from '@activepieces/pieces-framework';
import {
AuthenticationType,
HttpMethod,
httpClient,
} from '@activepieces/pieces-common';
import { baseUrlv0 } from '../common/common';
import { agentIdDropdown } from '../common/props';
export const agentDelete = createAction({
auth: straicoAuth,
name: 'agent_delete',
displayName: 'Delete Agent',
description: 'Delete a specific agent by its ID',
props: {
agentId: agentIdDropdown('Agent','Select the agent to delete')
},
async run({ auth, propsValue }) {
const { agentId } = propsValue;
if (!agentId) {
throw new Error('Agent ID is required');
}
const response = await httpClient.sendRequest<{
success: boolean;
message: string;
}>({
url: `${baseUrlv0}/agent/${agentId}`,
method: HttpMethod.DELETE,
authentication: {
type: AuthenticationType.BEARER_TOKEN,
token: auth.secret_text,
},
});
return response.body;
},
});

View File

@@ -0,0 +1,56 @@
import { straicoAuth } from '../../index';
import { createAction, Property } from '@activepieces/pieces-framework';
import {
AuthenticationType,
HttpMethod,
httpClient,
} from '@activepieces/pieces-common';
import { baseUrlv0 } from '../common/common';
import { agentIdDropdown } from '../common/props';
interface AgentGetResponse {
_id: string;
uuid4: string;
user_id: string;
default_llm: string;
custom_prompt: string;
name: string;
description: string;
status: string;
tags: string[];
last_interaction: null | string;
interaction_count: number;
visibility: string;
rag_association?: string;
}
export const agentGet = createAction({
auth: straicoAuth,
name: 'agent_get',
displayName: 'Get Agent Details',
description: 'Retrieve details of a specific agent',
props: {
agentId:agentIdDropdown('Agent','Select the agent to get details for.')
},
async run({ auth, propsValue }) {
const { agentId } = propsValue;
if (!agentId) {
throw new Error('Agent ID is required');
}
const response = await httpClient.sendRequest<{
success: boolean;
data: AgentGetResponse;
}>({
url: `${baseUrlv0}/agent/${agentId}`,
method: HttpMethod.GET,
authentication: {
type: AuthenticationType.BEARER_TOKEN,
token: auth.secret_text,
},
});
return response.body.data;
},
});

View File

@@ -0,0 +1,47 @@
import { straicoAuth } from '../../index';
import { createAction } from '@activepieces/pieces-framework';
import {
AuthenticationType,
HttpMethod,
httpClient,
} from '@activepieces/pieces-common';
import { baseUrlv0 } from '../common/common';
interface Agent {
_id: string;
uuid4: string;
user_id: string;
default_llm: string;
custom_prompt: string;
name: string;
description: string;
status: string;
tags: string[];
__v: number;
rag_association?: string;
}
interface AgentListResponse {
success: boolean;
data: Agent[];
}
export const agentList = createAction({
auth: straicoAuth,
name: 'agent-list',
displayName: 'List Agents',
description: 'Retrieves the list of agents created by and available to the user.',
props: {},
async run({ auth }) {
const response = await httpClient.sendRequest<AgentListResponse>({
url: `${baseUrlv0}/agent`,
method: HttpMethod.GET,
authentication: {
type: AuthenticationType.BEARER_TOKEN,
token: auth.secret_text,
},
});
return response.body.data;
},
});

View File

@@ -0,0 +1,119 @@
import { straicoAuth } from '../../index';
import { createAction, Property } from '@activepieces/pieces-framework';
import {
AuthenticationType,
HttpMethod,
httpClient,
} from '@activepieces/pieces-common';
import { baseUrlv0 } from '../common/common';
import { agentIdDropdown } from '../common/props';
export const agentPromptCompletion = createAction({
auth: straicoAuth,
name: 'agent_prompt_completion',
displayName: 'Agent Prompt Completion',
description: 'Prompt an agent with a message and get a response',
props: {
agentId: agentIdDropdown('Agent','Select the agent to prompt.'),
prompt: Property.LongText({
displayName: 'Prompt',
required: true,
description: 'The text prompt for the agent',
}),
searchType: Property.StaticDropdown({
displayName: 'Search Type',
required: false,
description: 'The search type to use for RAG model',
options: {
disabled:false,
options: [
{ label: 'Similarity', value: 'similarity' },
{ label: 'MMR', value: 'mmr' },
{ label: 'Similarity Score Threshold', value: 'similarity_score_threshold' },
],
},
}),
k: Property.Number({
displayName: 'Number of Documents',
required: false,
description: 'Number of documents to return',
}),
fetchK: Property.Number({
displayName: 'Fetch K',
required: false,
description: 'Amount of documents to pass to MMR algorithm',
}),
lambdaMult: Property.Number({
displayName: 'Lambda Mult',
required: false,
description: 'Diversity of results returned by MMR (0 for minimum, 1 for maximum)',
}),
scoreThreshold: Property.Number({
displayName: 'Score Threshold',
required: false,
description: 'Minimum relevance threshold for similarity_score_threshold',
}),
},
async run({ auth, propsValue }) {
const {
agentId,
prompt,
searchType,
k,
fetchK,
lambdaMult,
scoreThreshold
} = propsValue;
if (!agentId) {
throw new Error('Agent ID is required');
}
if (!prompt) {
throw new Error('Prompt is required');
}
const requestBody: Record<string, unknown> = {
prompt,
};
const optionalParams = {
search_type: searchType,
k,
fetch_k: fetchK,
lambda_mult: lambdaMult,
score_threshold: scoreThreshold
};
Object.entries(optionalParams).forEach(([key, value]) => {
if (value !== undefined) {
requestBody[key] = value;
}
});
const response = await httpClient.sendRequest<{
success: boolean;
data: {
answer: string;
references: Array<{
page_content: string;
page: number;
}>;
file_name: string;
coins_used: number;
response: unknown;
};
}>({
url: `${baseUrlv0}/agent/${agentId}/prompt`,
method: HttpMethod.POST,
body: requestBody,
authentication: {
type: AuthenticationType.BEARER_TOKEN,
token: auth.secret_text,
},
});
return response.body.data;
},
});

View File

@@ -0,0 +1,233 @@
import { straicoAuth } from '../../index';
import { createAction, Property } from '@activepieces/pieces-framework';
import {
AuthenticationType,
HttpMethod,
httpClient,
} from '@activepieces/pieces-common';
import { baseUrlv0, baseUrlv1 } from '../common/common';
// Interface for agent update request body
interface AgentUpdateRequestBody {
name?: string;
description?: string;
custom_prompt?: string;
default_llm?: string;
status?: 'active' | 'inactive';
visibility?: 'private' | 'public';
}
// Interface for agent update response data
interface AgentUpdateResponse {
_id: string;
uuid4: string;
user_id: string;
default_llm: string;
custom_prompt: string;
name: string;
description: string;
status: string;
tags: string[];
last_interaction: null | string;
interaction_count: number;
visibility: string;
createdAt: string;
updatedAt: string;
__v: number;
rag_association?: string;
}
export const agentUpdate = createAction({
auth: straicoAuth,
name: 'agent_update',
displayName: 'Update Agent',
description: 'Update the details of a specific agent',
props: {
agentId: Property.Dropdown({
auth: straicoAuth,
displayName: 'Agent',
required: true,
description: 'Select the agent to update',
refreshers: [],
options: async ({ auth }) => {
if (!auth) {
return {
disabled: true,
placeholder: 'Please authenticate first',
options: [],
};
}
const response = await httpClient.sendRequest<{
success: boolean;
data: Array<{
_id: string;
name: string;
}>;
}>({
url: `${baseUrlv0}/agent`,
method: HttpMethod.GET,
authentication: {
type: AuthenticationType.BEARER_TOKEN,
token: auth.secret_text,
},
});
if (response.body.success && response.body.data) {
return {
options: response.body.data.map((agent) => {
return {
label: agent.name,
value: agent._id,
};
}),
};
}
return {
disabled: true,
placeholder: 'No agents found',
options: [],
};
},
}),
name: Property.ShortText({
displayName: 'Name',
required: false,
description: 'New name for the agent',
}),
description: Property.LongText({
displayName: 'Description',
required: false,
description: 'New description for the agent',
}),
customPrompt: Property.LongText({
displayName: 'Custom Prompt',
required: false,
description: 'New custom prompt for the agent',
}),
defaultLlm: Property.Dropdown({
auth: straicoAuth,
displayName: 'Default LLM',
required: false,
description: 'New default LLM for the agent',
refreshers: ['auth'],
defaultValue: 'openai/gpt-4o-mini',
options: async ({ auth }) => {
if (!auth) {
return {
disabled: true,
placeholder: 'Enter your API key first',
options: [],
};
}
try {
const models = await httpClient.sendRequest<{
data: {
chat: Array<{
name: string;
model: string;
}>;
};
}>({
url: `${baseUrlv1}/models`,
method: HttpMethod.GET,
authentication: {
type: AuthenticationType.BEARER_TOKEN,
token: auth.secret_text,
},
});
return {
disabled: false,
options:
models.body?.data?.chat?.map((model) => {
return {
label: model.name,
value: model.model,
};
}) || [],
};
} catch (error) {
return {
disabled: true,
options: [],
placeholder: "Couldn't load models, API key is invalid",
};
}
},
}),
status: Property.StaticDropdown({
displayName: 'Status',
required: false,
description: 'New status for the agent',
options: {
disabled:false,
options: [
{ label: 'Active', value: 'active' },
{ label: 'Inactive', value: 'inactive' },
],
},
}),
visibility: Property.StaticDropdown({
displayName: 'Visibility',
required: false,
description: 'New visibility setting for the agent',
options: {
disabled:false,
options: [
{ label: 'Private', value: 'private' },
{ label: 'Public', value: 'public' },
],
},
}),
},
async run({ auth, propsValue }) {
const {
agentId,
name,
description,
customPrompt,
defaultLlm,
status,
visibility
} = propsValue;
if (!agentId) {
throw new Error('Agent ID is required');
}
const requestBody: AgentUpdateRequestBody = {};
// Add properties to request body only if they are defined
if (name !== undefined) requestBody.name = name;
if (description !== undefined) requestBody.description = description;
if (customPrompt !== undefined) requestBody.custom_prompt = customPrompt;
if (defaultLlm !== undefined) requestBody.default_llm = defaultLlm;
if (status !== undefined) requestBody.status = status as 'active' | 'inactive';
if (visibility !== undefined) requestBody.visibility = visibility as 'private' | 'public';
// Only proceed if at least one property to update was provided
if (Object.keys(requestBody).length === 0) {
throw new Error('At least one property to update must be provided');
}
const response = await httpClient.sendRequest<{
success: boolean;
data: AgentUpdateResponse;
}>({
url: `${baseUrlv0}/agent/${agentId}`,
method: HttpMethod.PUT,
body: requestBody,
authentication: {
type: AuthenticationType.BEARER_TOKEN,
token: auth.secret_text,
},
});
return response.body.data;
},
});

View File

@@ -0,0 +1,58 @@
import { straicoAuth } from '../../index';
import { createAction, Property } from '@activepieces/pieces-framework';
import {
AuthenticationType,
HttpMethod,
httpClient,
} from '@activepieces/pieces-common';
import { baseUrlv0 } from '../common/common';
const SUPPORTED_FILE_TYPES = [
'pdf', 'docx', 'pptx', 'txt', 'xlsx', 'mp3', 'mp4',
'html', 'csv', 'json', 'py', 'php', 'js', 'css',
'cs', 'swift', 'kt', 'xml', 'ts', 'png', 'jpg',
'jpeg', 'webp', 'gif'
];
export const fileUpload = createAction({
auth: straicoAuth,
name: 'file_upload',
displayName: 'Upload File',
description: 'Upload a file to Straico API for processing.',
props: {
file: Property.File({
displayName: 'File',
required: true,
description: 'The file to upload. Supported file types: pdf, docx, pptx, txt, xlsx, mp3, mp4, html, csv, json, py, php, js, css, cs, swift, kt, xml, ts, png, jpg, jpeg, webp, gif',
}),
},
async run({ auth, propsValue }) {
const fileExtension = propsValue.file.filename.split('.').pop()?.toLowerCase();
if (!fileExtension || !SUPPORTED_FILE_TYPES.includes(fileExtension)) {
throw new Error(`File type not supported. Supported types are: ${SUPPORTED_FILE_TYPES.join(', ')}`);
}
const formData = new FormData();
formData.append('file', new Blob([propsValue.file.data]), propsValue.file.filename);
const response = await httpClient.sendRequest<{
data: {
url: string;
};
success: boolean;
}>({
url: `${baseUrlv0}/file/upload`,
method: HttpMethod.POST,
authentication: {
type: AuthenticationType.BEARER_TOKEN,
token: auth.secret_text,
},
body: formData,
headers: {
'Content-Type': 'multipart/form-data',
},
});
return response.body.data.url;
},
});

View File

@@ -0,0 +1,143 @@
import { straicoAuth } from '../../index';
import { createAction, Property } from '@activepieces/pieces-framework';
import {
AuthenticationType,
HttpMethod,
httpClient,
} from '@activepieces/pieces-common';
import { baseUrlv0, baseUrlv1 } from '../common/common';
export const imageGeneration = createAction({
auth: straicoAuth,
name: 'image_generation',
displayName: 'Image Generation',
description: 'Enables users to generate high-quality images based on textual descriptions.',
props: {
variations: Property.StaticDropdown({
displayName: 'Number of Images',
required: true,
description:
'Number of images to generate.',
defaultValue: 1,
options: {
disabled: false,
options: [
{ value: 1, label: '1' },
{ value: 2, label: '2' },
{ value: 3, label: '3' },
{ value: 4, label: '4' },
],
},
}),
model: Property.Dropdown({
auth: straicoAuth,
displayName: 'Model',
required: true,
description: 'Select the image generation model.',
defaultValue: 'openai/dall-e-3',
refreshers: ['auth'],
refreshOnSearch: true,
options: async ({ auth }, { searchValue }) => {
if (!auth) {
return {
disabled: true,
options: [],
};
}
try {
const response = await httpClient.sendRequest<{
data: { image?: { name?: string; model: string }[] };
success: boolean;
}>({
url: `${baseUrlv1}/models`,
method: HttpMethod.GET,
authentication: {
type: AuthenticationType.BEARER_TOKEN,
token: auth.secret_text,
},
});
const models = response.body?.data?.image ?? [];
const filtered = searchValue
? models.filter((m) => {
const term = String(searchValue).toLowerCase();
return (
(m.name ?? '').toLowerCase().includes(term) ||
m.model.toLowerCase().includes(term)
);
})
: models;
return {
disabled: false,
options: filtered.map((m) => ({
label: m.name ?? m.model,
value: m.model,
})),
};
} catch (e) {
return {
disabled: true,
options: [],
placeholder: 'Failed to load models. Check API key and try again.',
};
}
},
}),
size: Property.StaticDropdown({
displayName: 'Image Dimensions',
required: true,
description:
'The desired image dimensions.',
defaultValue: 'square',
options: {
disabled: false,
options: [
{ value: 'square', label: 'square' },
{ value: 'landscape', label: 'landscape' },
{ value: 'portrait', label: 'portrait' }
],
},
}),
description: Property.LongText({
displayName: 'Description',
required: true,
description:
'A detailed textual description of the image to be generated.',
}),
},
async run({ auth, propsValue }) {
const response = await httpClient.sendRequest<{
data: {
zip: string;
images: string[];
price: {
price_per_image: number;
quantity_images: number;
total: number;
};
};
success: boolean;
}>({
url: `${baseUrlv0}/image/generation`,
method: HttpMethod.POST,
authentication: {
type: AuthenticationType.BEARER_TOKEN,
token: auth.secret_text,
},
body: {
model: propsValue.model,
description: propsValue.description,
size: propsValue.size,
variations: propsValue.variations
},
});
return {
images: response.body.data.images,
zip: response.body.data.zip,
};
},
});

View File

@@ -0,0 +1,163 @@
import { straicoAuth } from '../../index';
import { createAction, Property } from '@activepieces/pieces-framework';
import {
AuthenticationType,
HttpMethod,
httpClient,
propsValidation,
} from '@activepieces/pieces-common';
import { z } from 'zod';
import { baseUrlv1 } from '../common/common';
export const promptCompletion = createAction({
auth: straicoAuth,
name: 'prompt_completion',
displayName: 'Ask AI',
description:
'Enables users to generate prompt completion based on a specified model.',
props: {
model: Property.Dropdown({
auth: straicoAuth,
displayName: 'Model',
required: true,
description:
'The model which will generate the completion. Some models are suitable for natural language tasks, others specialize in code.',
refreshers: [],
defaultValue: 'openai/gpt-4o-mini',
options: async ({ auth }) => {
if (!auth) {
return {
disabled: true,
placeholder: 'Enter your API key first',
options: [],
};
}
try {
const models = await httpClient.sendRequest<{
data: {
chat: Array<{
name: string;
model: string;
}>;
};
}>({
url: `${baseUrlv1}/models`,
method: HttpMethod.GET,
authentication: {
type: AuthenticationType.BEARER_TOKEN,
token: auth.secret_text,
},
});
return {
disabled: false,
options:
models.body?.data?.chat?.map((model) => {
return {
label: model.name,
value: model.model,
};
}) || [],
};
} catch (error) {
return {
disabled: true,
options: [],
placeholder: "Couldn't load models, API key is invalid",
};
}
},
}),
prompt: Property.LongText({
displayName: 'Prompt',
required: true,
description: 'The prompt text for which completions are requested',
}),
fileUrls: Property.Array({
displayName: 'File URLs',
required: false,
description: 'URLs of files to be processed by the model (maximum 4 URLs), previously uploaded via the File Upload endpoint',
}),
youtubeUrls: Property.Array({
displayName: 'YouTube URLs',
required: false,
description: 'URLs of YouTube videos to be processed by the model (maximum 4 URLs)',
}),
imageUrls: Property.Array({
displayName: 'Image URLs',
required: false,
description: 'URLs of images to be processed by the model, previously uploaded via the File Upload endpoint',
}),
displayTranscripts: Property.Checkbox({
displayName: 'Display Transcripts',
required: false,
description: 'If true, returns transcripts of the files. Note: Either File URLs or YouTube URLs are required when this is enabled',
defaultValue: false,
}),
temperature: Property.Number({
displayName: 'Temperature',
required: false,
description: 'This setting influences the variety in the model\'s responses (0-2)',
}),
maxTokens: Property.Number({
displayName: 'Max Tokens',
required: false,
description: 'Set the limit for the number of tokens the model can generate in response',
}),
},
async run({ auth, propsValue }) {
// Validate URLs length and displayTranscripts requirements
await propsValidation.validateZod(propsValue, {
fileUrls: z.array(z.string()).max(4, 'Maximum 4 file URLs allowed'),
youtubeUrls: z.array(z.string()).max(4, 'Maximum 4 YouTube URLs allowed'),
});
// Validate that displayTranscripts is only true when fileUrls or youtubeUrls are provided
if (propsValue.displayTranscripts === true &&
(!propsValue.fileUrls?.length && !propsValue.youtubeUrls?.length)) {
throw new Error('Either File URLs or YouTube URLs are required when Display Transcripts is enabled');
}
const response = await httpClient.sendRequest<{
data: {
completions: {
[key: string]: {
completion: {
choices: Array<{
message: {
content: string;
};
}>;
};
};
};
transcripts: Array<{ text: string }>;
};
}>({
url: `${baseUrlv1}/prompt/completion`,
method: HttpMethod.POST,
authentication: {
type: AuthenticationType.BEARER_TOKEN,
token: auth.secret_text,
},
body: {
models: [propsValue.model],
message: propsValue.prompt,
...(propsValue.fileUrls?.length ? { file_urls: propsValue.fileUrls } : {}),
...(propsValue.youtubeUrls?.length ? { youtube_urls: propsValue.youtubeUrls } : {}),
...(propsValue.imageUrls?.length ? { images: propsValue.imageUrls } : {}),
...((propsValue.displayTranscripts !== undefined && (propsValue.fileUrls?.length || propsValue.youtubeUrls?.length)) ?
{ display_transcripts: propsValue.displayTranscripts } : {}),
...(propsValue.temperature !== undefined ? { temperature: propsValue.temperature } : {}),
...(propsValue.maxTokens !== undefined ? { max_tokens: propsValue.maxTokens } : {}),
},
});
const modelResponse = response.body.data.completions[propsValue.model];
return {
content: modelResponse.completion.choices[0].message.content,
transcripts: response.body.data?.transcripts || []
};
},
});

View File

@@ -0,0 +1,164 @@
import { straicoAuth } from '../../index';
import { createAction, Property } from '@activepieces/pieces-framework';
import {
AuthenticationType,
HttpMethod,
httpClient,
} from '@activepieces/pieces-common';
import { baseUrlv0 } from '../common/common';
import FormData from 'form-data';
export const createRag = createAction({
auth: straicoAuth,
name: 'create_rag',
displayName: 'Create RAG',
description: 'Create a new RAG (Retrieval-Augmented Generation) base in the database.',
props: {
name: Property.ShortText({
displayName: 'Name',
required: true,
description: 'Represents the name of the RAG base',
}),
description: Property.LongText({
displayName: 'Description',
required: true,
description: 'Represents the description of the agent',
}),
file: Property.File({
displayName: 'File',
required: true,
description:
'Represents the file to be attached. Accepted file extensions are: pdf, docx, csv, txt, xlsx, py',
}),
chunkingMethod: Property.Dropdown({
auth: straicoAuth,
displayName: 'Chunking Method',
required: false,
description: 'Represents the chunking method to be used for generating the RAG base. The default value is fixed_size',
defaultValue: 'fixed_size',
refreshers: [],
options: async () => {
return {
options: [
{ label: 'Fixed Size', value: 'fixed_size' },
{ label: 'Recursive', value: 'recursive' },
{ label: 'Markdown', value: 'markdown' },
{ label: 'Python', value: 'python' },
{ label: 'Semantic', value: 'semantic' },
],
disabled: false
};
},
}),
chunkSize: Property.Number({
displayName: 'Chunk Size',
required: false,
description: 'The size of each chunk (default: 1000)',
defaultValue: 1000,
}),
chunkOverlap: Property.Number({
displayName: 'Chunk Overlap',
required: false,
description: 'The overlap between chunks (default: 50)',
defaultValue: 50,
}),
separator: Property.ShortText({
displayName: 'Separator',
required: false,
description: 'The separator to use for fixed_size chunking method'
}),
separators: Property.Array({
displayName: 'Separators',
required: false,
description: 'The separators to use for recursive chunking method'
}),
breakpointThresholdType: Property.StaticDropdown({
displayName: 'Breakpoint Threshold Type',
required: false,
description: 'The breakpoint threshold type for semantic chunking method',
options: {
disabled: false,
options: [
{ label: 'Percentile', value: 'percentile' },
{ label: 'Interquartile', value: 'interquartile' },
{ label: 'Standard Deviation', value: 'standard_deviation' },
{ label: 'Gradient', value: 'gradient' },
],
},
}),
bufferSize: Property.Number({
displayName: 'Buffer Size',
required: false,
description: 'The buffer size for semantic chunking method'
}),
},
async run({ auth, propsValue }) {
const { file, chunkingMethod, chunkSize, chunkOverlap, separator, separators, breakpointThresholdType, bufferSize } = propsValue;
const formData = new FormData();
formData.append('name', propsValue.name);
formData.append('description', propsValue.description);
formData.append('files', file.data, file.filename);
if (chunkingMethod) {
formData.append('chunking_method', chunkingMethod);
}
if (chunkSize !== undefined) {
formData.append('chunk_size', chunkSize.toString());
}
if (chunkOverlap !== undefined) {
formData.append('chunk_overlap', chunkOverlap.toString());
}
if (separator && separator.trim() !== '') {
formData.append('separator', separator);
}
if (separators && separators.length > 0) {
for (const separator of separators as string[]) {
formData.append('separators', separator);
}
}
if (breakpointThresholdType) {
formData.append('breakpoint_threshold_type', breakpointThresholdType);
}
if (bufferSize !== undefined) {
formData.append('buffer_size', bufferSize.toString());
}
const response = await httpClient.sendRequest<{
success: boolean;
data: {
_id: string;
user_id: string;
name: string;
rag_url: string;
original_filename: string;
chunking_method: string;
chunk_overlap: number;
created_at: string;
};
total_coins: number;
total_words: number;
}>({
url: `${baseUrlv0}/rag`,
method: HttpMethod.POST,
authentication: {
type: AuthenticationType.BEARER_TOKEN,
token: auth.secret_text,
},
body: formData,
headers: {
'Content-Type': 'multipart/form-data',
},
});
return response.body;
},
});

View File

@@ -0,0 +1,43 @@
import { straicoAuth } from '../../index';
import { createAction, Property } from '@activepieces/pieces-framework';
import {
AuthenticationType,
HttpMethod,
httpClient,
} from '@activepieces/pieces-common';
import { baseUrlv0 } from '../common/common';
export const deleteRag = createAction({
auth: straicoAuth,
name: 'delete_rag',
displayName: 'Delete RAG',
description: 'Delete a specific RAG (Retrieval-Augmented Generation) base by its ID.',
props: {
ragId: Property.ShortText({
displayName: 'RAG ID',
required: true,
description: 'The ID of the RAG base to delete',
}),
},
async run({ auth, propsValue }) {
const { ragId } = propsValue;
if (!ragId) {
throw new Error('RAG ID is required');
}
const response = await httpClient.sendRequest<{
success: boolean;
message: string;
}>({
url: `${baseUrlv0}/rag/${ragId}`,
method: HttpMethod.DELETE,
authentication: {
type: AuthenticationType.BEARER_TOKEN,
token: auth.secret_text,
},
});
return response.body;
},
});

View File

@@ -0,0 +1,55 @@
import { straicoAuth } from '../../index';
import { createAction, Property } from '@activepieces/pieces-framework';
import {
AuthenticationType,
HttpMethod,
httpClient,
} from '@activepieces/pieces-common';
import { baseUrlv0 } from '../common/common';
export const getRagById = createAction({
auth: straicoAuth,
name: 'get_rag_by_id',
displayName: 'Get RAG by ID',
description: 'Retrieve a specific RAG (Retrieval-Augmented Generation) base by its ID.',
props: {
ragId: Property.ShortText({
displayName: 'RAG ID',
required: true,
description: 'The ID of the RAG base to retrieve.',
}),
},
async run({ auth, propsValue }) {
const { ragId } = propsValue;
if (!ragId) {
throw new Error('RAG ID is required');
}
const response = await httpClient.sendRequest<{
success: boolean;
data: {
_id: string;
user_id: string;
name: string;
tag_url: string;
original_filename: string;
chunking_method: string;
chunk_size: number;
chunk_overlap: number;
createdAt: string;
updatedAt: string;
__v: number;
};
}>({
url: `${baseUrlv0}/rag/${ragId}`,
method: HttpMethod.GET,
authentication: {
type: AuthenticationType.BEARER_TOKEN,
token: auth.secret_text,
},
});
return response.body;
},
});

View File

@@ -0,0 +1,43 @@
import { straicoAuth } from '../../index';
import { createAction } from '@activepieces/pieces-framework';
import {
AuthenticationType,
HttpMethod,
httpClient,
} from '@activepieces/pieces-common';
import { baseUrlv0 } from '../common/common';
export const listRags = createAction({
auth: straicoAuth,
name: 'list_rags',
displayName: 'List RAGs',
description: 'List all RAG (Retrieval-Augmented Generation) bases for a user.',
props: {},
async run({ auth }) {
const response = await httpClient.sendRequest<{
success: boolean;
data: {
_id: string;
user_id: string;
name: string;
tag_url: string;
original_filename: string;
chunking_method: string;
chunk_size: number;
chunk_overlap: number;
createdAt: string;
updatedAt: string;
__v: number;
}[];
}>({
url: `${baseUrlv0}/rag/user`,
method: HttpMethod.GET,
authentication: {
type: AuthenticationType.BEARER_TOKEN,
token: auth.secret_text,
},
});
return response.body;
},
});

View File

@@ -0,0 +1,166 @@
import { straicoAuth } from '../../index';
import { createAction, Property } from '@activepieces/pieces-framework';
import {
AuthenticationType,
HttpMethod,
httpClient,
} from '@activepieces/pieces-common';
import { baseUrlv0, baseUrlv1 } from '../common/common';
export const ragPromptCompletion = createAction({
auth: straicoAuth,
name: 'rag_prompt_completion',
displayName: 'RAG Prompt Completion',
description: 'Send a prompt to a specific RAG (Retrieval-Augmented Generation) model.',
props: {
ragId: Property.ShortText({
displayName: 'RAG ID',
required: true,
description: 'The ID of the RAG base to query',
}),
prompt: Property.LongText({
displayName: 'Prompt',
required: true,
description: 'A text prompt for the RAG model',
}),
model: Property.Dropdown({
auth: straicoAuth,
displayName: 'Model',
required: true,
description: 'The specific LLM to be used',
refreshers: [],
defaultValue: 'openai/gpt-4o-mini',
options: async ({ auth }) => {
if (!auth) {
return {
disabled: true,
placeholder: 'Enter your API key first',
options: [],
};
}
try {
const models = await httpClient.sendRequest<{
data: {
chat: Array<{
name: string;
model: string;
}>;
};
}>({
url: `${baseUrlv1}/models`,
method: HttpMethod.GET,
authentication: {
type: AuthenticationType.BEARER_TOKEN,
token: auth.secret_text,
},
});
const modelOptions = models.body?.data?.chat?.map((model) => {
return {
label: model.name,
value: model.model,
};
}) || [];
return {
disabled: false,
options: modelOptions,
};
} catch (error) {
return {
disabled: true,
options: [],
placeholder: "Couldn't load models, API key is invalid",
};
}
},
}),
searchType: Property.StaticDropdown({
displayName: 'Search Type',
required: false,
description: 'Type of search to perform',
options: {
options: [
{ label: 'Similarity', value: 'similarity' },
{ label: 'MMR', value: 'mmr' },
{ label: 'Similarity Score Threshold', value: 'similarity_score_threshold' }
]
},
}),
k: Property.Number({
displayName: 'Number of Documents',
required: false,
description: 'Number of documents to return',
}),
fetchK: Property.Number({
displayName: 'Fetch K',
required: false,
description: 'Amount of documents to pass to MMR algorithm',
}),
lambdaMult: Property.Number({
displayName: 'Lambda Mult',
required: false,
description: 'Diversity of results return by MMR (1 for minimum and 0 for maximum)',
}),
scoreThreshold: Property.Number({
displayName: 'Score Threshold',
required: false,
description: 'Minimum relevance threshold for similarity_score_threshold',
}),
},
async run({ auth, propsValue }) {
const { ragId, prompt, model, searchType, k, fetchK, lambdaMult, scoreThreshold } = propsValue;
if (!ragId) {
throw new Error('RAG ID is required');
}
if (!prompt) {
throw new Error('Prompt is required');
}
const requestBody: Record<string, string | number> = {
prompt,
model,
};
const optionalParams = {
search_type: searchType,
k,
fetch_k: fetchK,
lambda_mult: lambdaMult,
score_threshold: scoreThreshold
};
Object.entries(optionalParams).forEach(([key, value]) => {
if (value !== undefined) {
requestBody[key] = value;
}
});
const response = await httpClient.sendRequest<{
success: boolean;
data: {
answer: string;
references: Array<{
page_content: string;
page: number;
}>;
file_name: string;
coins_used: number;
response: Record<string, unknown>;
};
}>({
url: `${baseUrlv0}/rag/${ragId}/prompt`,
method: HttpMethod.POST,
authentication: {
type: AuthenticationType.BEARER_TOKEN,
token: auth.secret_text,
},
body: requestBody,
});
return response.body;
},
});

View File

@@ -0,0 +1,76 @@
import { straicoAuth } from '../../index';
import { createAction, Property } from '@activepieces/pieces-framework';
import {
AuthenticationType,
HttpMethod,
httpClient,
} from '@activepieces/pieces-common';
import { baseUrlv0 } from '../common/common';
import FormData from 'form-data';
export const updateRag = createAction({
auth: straicoAuth,
name: 'update_rag',
displayName: 'Update RAG',
description: 'Update an existing RAG (Retrieval-Augmented Generation) base with additional files.',
props: {
ragId: Property.ShortText({
displayName: 'RAG ID',
required: true,
description: 'The ID of the RAG base to update.',
}),
file: Property.File({
displayName: 'File',
required: true,
description:
'Represents the file to be attached. Accepted file extensions are: pdf, docx, csv, txt, xlsx, py.',
}),
},
async run({ auth, propsValue }) {
const { ragId, file } = propsValue;
if (!ragId) {
throw new Error('RAG ID is required');
}
const formData = new FormData();
formData.append('files', file.data, file.filename);
const response = await httpClient.sendRequest<{
success: boolean;
data: {
_id: string;
user_id: string;
name: string;
description: string;
rag_url: string;
original_filename: string;
chunking_method: string;
chunk_size: number;
chunk_overlap: number;
buffer_size: number;
breakpoint_threshold_type: string;
separator: string;
separators: string[];
createdAt: string;
updatedAt: string;
__v: number;
};
total_coins: number;
total_words: number;
}>({
url: `${baseUrlv0}/rag/${ragId}`,
method: HttpMethod.PUT,
authentication: {
type: AuthenticationType.BEARER_TOKEN,
token: auth.secret_text,
},
body: formData,
headers: {
'Content-Type': 'multipart/form-data',
},
});
return response.body;
},
});

View File

@@ -0,0 +1,2 @@
export const baseUrlv0 = 'https://api.straico.com/v0';
export const baseUrlv1 = 'https://api.straico.com/v1';

View File

@@ -0,0 +1,54 @@
import { AuthenticationType, httpClient, HttpMethod } from "@activepieces/pieces-common";
import { Property } from "@activepieces/pieces-framework";
import { baseUrlv0 } from "./common";
import { straicoAuth } from "../..";
export const agentIdDropdown =(displayName:string, desc:string)=> Property.Dropdown({
auth: straicoAuth,
displayName,
required: true,
description: desc,
refreshers: [],
options: async ({ auth }) => {
if (!auth) {
return {
disabled: true,
placeholder: 'Please authenticate first',
options: [],
};
}
const response = await httpClient.sendRequest<{
success: boolean;
data: Array<{
_id: string;
name: string;
}>;
}>({
url: `${baseUrlv0}/agent`,
method: HttpMethod.GET,
authentication: {
type: AuthenticationType.BEARER_TOKEN,
token: auth.secret_text,
},
});
if (response.body.success && response.body.data) {
return {
options: response.body.data.map((agent) => {
return {
label: agent.name,
value: agent._id,
};
}),
};
}
return {
disabled: true,
placeholder: 'No agents found',
options: [],
};
},
})

View File

@@ -0,0 +1,19 @@
{
"extends": "../../../../tsconfig.base.json",
"compilerOptions": {
"module": "commonjs",
"forceConsistentCasingInFileNames": true,
"strict": true,
"noImplicitOverride": true,
"noPropertyAccessFromIndexSignature": true,
"noImplicitReturns": true,
"noFallthroughCasesInSwitch": true
},
"files": [],
"include": [],
"references": [
{
"path": "./tsconfig.lib.json"
}
]
}

View File

@@ -0,0 +1,11 @@
{
"extends": "./tsconfig.json",
"compilerOptions": {
"module": "commonjs",
"outDir": "../../../../dist/out-tsc",
"declaration": true,
"types": ["node"]
},
"exclude": ["jest.config.ts", "src/**/*.spec.ts", "src/**/*.test.ts"],
"include": ["src/**/*.ts"]
}